首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
循环利用重组大肠杆菌细胞转化合成丁二酸   总被引:1,自引:0,他引:1  
研究了回收丁二酸发酵液中的大肠杆菌进行细胞转化的可行性,以转化率和生产效率为指标,考察了不同菌体浓度、底物浓度、pH调节剂对细胞转化的影响。发酵结果表明大肠杆菌可以在仅含有葡萄糖和pH调节剂的水环境中转化生产丁二酸,并确定了最佳的转化条件为:细胞浓度(OD600)50,底物浓度40g/L,缓冲盐为MgCO3。基于优化好的条件,在7L发酵罐中进行重复批次转化,第1次转化的转化率和生产效率分别达到91%和3.22g/(L·h),第2次转化的生产效率和转化率达到了86%和2.04g/(L·h),第3次转化的转化率和生产效率分别达到了83%和1.82g/(L·h)。  相似文献   

2.
Acetone–butanol–ethanol (ABE) production from corncob was achieved using an integrated process combining wet disk milling (WDM) pretreatment with enzymatic hydrolysis and fermentation by Clostridium acetobutylicum SE-1. Sugar yields of 71.3 % for glucose and 39.1 % for xylose from pretreated corncob were observed after enzymatic hydrolysis. The relationship between sugar yields and particle size of the pretreated corncob was investigated, suggesting a smaller particle size benefits enzymatic hydrolysis with the WDM pretreatment approach. Analysis of the correlation between parameters representing particle size and efficiency of enzymatic hydrolysis predicted that frequency 90 % is the best parameter representing particle size for the indication of the readiness of the material for enzymatic hydrolysis. ABE production from corncob was carried out with both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes using C. acetobutylicum SE-1. Interestingly, when considering the time for fermentation as the time for ABE production, a comparable rate of sugar consumption and ABE production in the SHF process (0.55 g/l·h sugar consumption and 0.20 g/l·h ABE production) could be observed when glucose (0.50 g/l·h sugar consumption and 0.17 g/l·h ABE production) or a mixture of glucose and xylose (0.68 g/l·h sugar consumption and 0.22 g/l·h ABE production) mimicking the corncob hydrolysate was used as the substrate for fermentation. This result suggested that the WDM is a suitable pretreatment method for ABE production from corncob owing to the mild conditions. A higher ABE production rate could be observed with the SSF process (0.15 g/l·h) comparing with SHF process (0.12 g/l·h) when combining the time for saccharification and fermentation and consider it as the time for ABE production. This is possibly a result of low sustained sugar level during fermentation. These investigations lead to the suggestion that this new WDM pretreatment method has the potentials to be exploited for efficient ABE production from corncob.  相似文献   

3.
The biological transformation from rifamycin B to rifamycin S was carried out with the live whole cells of Humicola sp., ATCC 20620, immobilized in a dual hollow fiber bioreactor (DHFBR). Humicola sp., inoculated in the DHFBR, proliferated successfully to a high density cell mass within the space between an outer silicone tubing and three inner polypropylene hollow fiber membranes. In order to control the cell growth a nitrogen deficient medium was fed. Conversion of rifamycin B continued for more than 30 d, whereas that of immobilized rifamycin B oxidase lasted only for 3 d in comparable conditions.In the DHFBR the volumetric productivity of rifamycin S was 0.65–1.03 mmol/(dm3 · h) with 60% conversion, while that in the rotating packed disk reactor was 0.27 mmol/(dm3 · h) with 40% conversion at a residence time of 0.5–1.5 h.  相似文献   

4.
Summary Hybridoma cells were cultured for two months in the dual hollow fiber bioreactor (DHFBR) which had been successfully used for high cell density cultures of various microbial cells. In batch suspension culture the concentration of monoclonal antibody (Mab) against human Chorionic Gonadotropin (hCG) and the cell density of Alps 25-3 hybridoma cells were obtained in 30 μg/mL and 2.35×106 cells/mL, respectively. The continuous culture with DHFBR produced Mab of 100–130 μg/mL for 30 days and the estimated cell density in the extracapillary space of DHFBR was 1.87×108 cells/mL based on the antibody production rate. The productivity of Mab was 205 mg/day per litre of the total reactor volume while that of the batch suspension culture was only 10 mg/L day.  相似文献   

5.
Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood to produce ethanol and very enriched fructose syrup from glucose/fructose mixtures through the selective fermentation of glucose. A maximum ethanol productivity of 21.9 g/l-h was attained from a feed containing 9.7% (w/v) glucose and 9.9% (w/v) fructose. An ethanol concentration, glucose conversion and fructose yield of 29.6 g/l, 62% and 99% were obtained, respectively. This resulted in a final fructose/glucose ratio of 2.7. At lower ethanol productivity levels the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. The addition of 30 mg/l oleic acid to the medium increased the ethanol productivity and its concentration by 13% at a dilution rate of 0.74 h?1.  相似文献   

6.
Summary Zymomonas mobilis strain ZM4 was used for ethanol production from fructose (100 g/l) in continuous culture with a mineral (containing Ca pantothenate) or a rich (containing yeast extract) mediium. With both media high conversion yields were observed but the ethanol productivity was limited by the low biomass content of the fermentor. A new flocculent strain of Z.mobilis (ZM4F) was cultivated in a CSTR with an internal settler and showed a maximal productivity of 93 g/l.h (fructose conversion of 80%). When the fructose conversion was 96% an ethanol productivity of 85.6 g/l.h with an ethanol yield of 0.49 g/g (96% of theoretical) was observed.  相似文献   

7.
This study describes the results of a hollow fibre membrane reactor with immobilized treated cells of Zymomonas mobilis which produced sorbitol and gluconic acid continuously from fructose and glucose respectively. A productivity of 10–20 g sorbitol · L-1 · h-1 and 10–20 gluconate · L-1 · h-1 (based on total bioreactor volume) from a feed of 100 g · L-1 each of glucose and fructose was possible at high dilution rates. Kinetic parameters describing the reaction rate of treated cells in batch reactors were used to analyse the performance of the hollow fibre membrane reactor employing significant convective mass transfer. No significant mass transfer limitation was apparent.  相似文献   

8.
Zymomonas mobilis cells were entrapped in K. carrageenan. Growth was observed with the immobilized cell preparation. The kinetic and yield parameters for the conversion of fructose to ethanol were nearly identical to free cells. The same preparation of immobilized cells was used in six repeated batch runs and at the end sixthbatch fructose was converted to ethanol more rapidly and efficiently with ethanol productivity of 14 g/L h and 96% conversion of fructose. The effect of high fructose and ethanol levels on specific fructose uptake rate and ethanol productivity was studied and quantitatively analyzed.  相似文献   

9.
Starch from wheat flour was enzymatically hydrolyzed and used for ethanol production by Zymmonas mobilis. The addition of a nitrogen source like ammonium sulfate was sufficient to obtain a complete fermentation of the hdyrolyzed strach. In batch culture a glucose concentration as high as 223 g/l could be fermented (conversion 99.5%) to 105 g/l of ethanol in 70 h with an ethanol yield of 0.47 g/g (92% of theoretical). In continuous culture the use of a flocculent strain and a fermentor with an internal settler resulted (D=1,4 h−1) in a high ethanol productivity of 70.7 g/l·h with: ethanol concentration 49.5 g/l, ethanol yield 0.50 g/g (98% of theoretical and substrate conversion 99%.  相似文献   

10.
Immobilized growing cells of Zymomonas mobilis were found to ferment rapidly and efficiently media containing 100 g/L fructose in a continuous reactor. A volumetric ethanol productivity of 94.8 g/L h was achieved at a substrate conversion of 75.5%. With 97% conversion of substrate the productivity was 28.4 g/L h. At fructose concentrations of 150 and 200 g/L substrate and product inhibitions limited the performance of the reactor. Ethanol production was constant over a period of 55 days.  相似文献   

11.
Summary A new approach for continuous production of ethanol was developed using a Hollow fiber fermentor (HFF). Saccharomyces cerevisiae cells were packed into the shell-side of a hollow fiber module. Using 100 g/l glucose in the feed gave an optimum ethanol productivity, based on total HFF volume, of 40 g ethanol/l/h at a dilution rate of 3.0 h-1. Under these conditions, glucose utilization was 30%. However, at 85% glucose utilization the productivity was 10 g ethanol/l/h. This compares to batch fermentor productivity of 2.1 g ethanol/l/h at 100% glucose utilization.  相似文献   

12.
Candida magnoliae HH-01, a yeast strain that is currently used for the industrial production of mannitol, has the highest mannitol production ever reported for a mannitol-producing microorganism. However, when the fructose concentration exceeds 150 g/L, the volumetric mannitol production rate decreases because of a lag in mannitol production, and the yield decreases as a result of the formation of side products. In fed-batch culture, the volumetric production rate and mannitol yield from fructose vary substantially with the fructose concentration and are maximal at a controlled fructose concentration of 50 g/L. In continuous feeding experiments, the maximum mannitol yield was 85% (g/g) at a glucose/fructose feeding ratio of 1/20. A high glucose concentration in the production phase resulted in the formation of ethanol followed by a decrease in yield and productivity. NAD(P)H-dependent mannitol dehydrogenase was purified to homogeneity from C. magnoliae. In vitro, mannitol dehydrogenase was inhibited by increasing ethanol concentration. Mannitol product was also found to be inhibitory with a K(i) of 183 mM. Under optimum conditions, a final mannitol production of 213 g/L was obtained from 250 g fructose/L after 110 h.  相似文献   

13.
Studies on hexose consumption by Saccharomyces cerevisiae show that glucose is consumed faster than fructose when both are present (9:1 fructose to glucose) in the medium during the fermentation of Agave. The objective of this work was to select strains of S. cerevisiae that consume fructose equal to or faster than glucose at high fructose concentrations by analyzing the influence of different glucose concentrations on the fructose consumption rate. The optimal growth conditions were determined by a kinetics assay using high performance liquid chromatography (HPLC) using 50?g of glucose and 50?g of fructose per liter of synthetic medium containing peptone and yeast extract. Using the same substrate concentrations, strain ITD-00185 was shown to have a higher reaction rate for fructose over glucose. At 75?g of fructose and 25?g of glucose per liter, strain ITD-00185 had a productivity of 1.02 gL?1?h?1 after 40?h and a fructose rate constant of 0.071?h?1. It was observed that glucose concentration positively influences fructose consumption when present in a 3:1 ratio of fructose to glucose. Therefore, adapted strains at high fructose concentrations could be used as an alternative to traditional fermentation processes.  相似文献   

14.
自养黄杆菌合成羟基丁酸和羟基戊酸共聚体的发酵研究   总被引:14,自引:2,他引:12  
采用本实验室从土壤中分离到的一株自养黄杆菌进行了羟基丁酸和羟基戊酸共聚体〔P(HB-co-HV)〕的发酵试验。实验结果表明,该菌株是自养黄杆菌葡萄糖运输突变株,可以葡萄糖、果糖、蔗糖、麦芽糖、乙酸盐、乳酸盐和苹果酸盐作为唯一碳源,尤以葡萄糖和果糖效果最佳。硫酸铵、氯化铵和蛋白胨等不同氮源不影响其生长,却影响细胞中P(HB-co-HV)的含量和P(HB-co-HV)中HV/HB的比例。应用两阶段控制方式,经42h的补料分批发酵,细胞浓度达34.9g·L~(-1),P(HB-co-HV)浓度达25.28g·L~(-1)。细胞和P(HB-co-HV)生产速率系数分别为0.83g·L~(-1)”·h~(-1)和0.61g·L~(-1)·h~(-1)。以基质为基准的细胞得率系数(Yx/s)、产物得率系数(Yp/s)和以干细胞为基准的产物得率系数(Yp/x)分别为0.283(g/g)、0.174(g/g)和0.73(g/g)。改变培养基中碳氮源组分可将P(HB-co-HV)中HB的含量调节在24%~78%之间。  相似文献   

15.
Aspergillus niger B60 was immobilized in a dual hollow-fiber bioreactor (DHFBR) to produce citric acid continuously. The fungi proliferated well in the interstitial region formed by a parallel arrangement of three microporous polypropylene hollow fibers contained within a silicone tube. Long-term operation with nitrogen-enriched medium was not possible due to expansion of the silicone tubes by continual cell growth. The fungal growth could be controlled by supplying a nitrogen-deficient medium at the production stage. With pure oxygen aeration and nitrogen-deficient medium, volumetric productivity reached 1.62 g/L h at a residence time of 4.02 h, which corresponded to a 27-fold increase over that of shake-flask fermentation. When the residence time was increased to 20.1 h, citric acid at a concentration of 26 g/L was continuously produced, with a yield of 80-90% and a volumetric productivity of 1.3 g/L h. This represents a significant improvement in final concentration, yield, and the volumetric productivity over the equivalent values of the corresponding batch fermentation, which were 18 g/L, 40%, and 0.06 g/L h, respectively.  相似文献   

16.
The productivity of immobilized yeast cell reactors varies with a number of parameters, including flow, amount and growth rate of yeast, bead size and type of medium. Variation of these parameters has a pronounced effect on reaction rate. This paper presents typical ranges for these productivities and demonstrates the patterns of changes that take place when bead size, flow and reaction medium are varied. Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for the production of ethanol. The productivity of immobilized yeast in a batch reactor (0.2 g ethanol/g yeast · h) was only two-thirds that of free cells suspended at an equivalent cell density (0.3 g ethanol/g yeast · h). Different flow rates and bead sizes were used to ‘optimize’ the productivity. The productivity of 3.34 mm beads at a flow rate of 8.8 litre h?1(superficial velocity: 0.12 cm s?1) was 95% higher than that at 1.0 l h?1. Maximum productivities of 0.34, 0.27, 0.22 g/g yeast· h were obtained (at a flow rate of 8.8 l h?1) for 9.2% yeast-immobilized beads of 3.34, 4.45 and 5.65 mm in diameter, respectively.  相似文献   

17.
A continuous conversion process of rice starch hydrolysate to 2-keto-D-gluconic acid (2KGA) by Arthrobacter globiformis C224 was developed. Its feasibility for industrial application was also evaluated. Results showed that the initial cell concentration exceeding 1.25 g/L met the continuous 2KGA production at a stable dilution rate and media composition, while the dilution rate and feeding glucose concentration had a significant effect on 2KGA production performance. The optimal operating parameters were obtained as: 0.090/h of dilution rate and 171.0 g/L of feeding glucose concentration. Under these conditions, the steady state had a produced 2KGA concentration of 124.74 g/L, average volumetric productivity of 11.23 g/L/h, and yield of 0.97 g/g. In conclusion, continuous 2KGA production by the A. globiformis C224 strain would be a superior industrial process for the production of 2KGA in terms of its high 2KGA productivity and yield.  相似文献   

18.
对不同葡萄糖浓度下光滑球拟酵母分批发酵生产丙酮酸的动力学模型分析发现, 葡萄糖浓度是影响光滑球拟酵母发酵生产丙酮酸过程功能的关键因素。在发酵初始阶段, 低浓度葡萄糖可维持较高的菌体比生长速率; 对数生长中前期, 葡萄糖快速进料使菌体浓度接近最大值, 并实现碳流从菌体生长转向丙酮酸积累; 对数生长后期葡萄糖浓度控制在33.4 g/L以维持高丙酮酸对葡萄糖产率系数 (0.71 g/g)。采用奇异控制的葡萄糖流加方式, 在7 L发酵罐上控制不同发酵阶段葡萄糖浓度处于最佳水平以强化光滑球拟酵母过程功能, 丙酮酸产量 (83.1 g/L)、产率 (0.621 g/g)、生产强度[1.00 g/(L·h)]与分批发酵对比, 分别提高了21.3%、21.6%和29.9%。  相似文献   

19.
Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8 g/L vs. 19.4 g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28 g/L·h vs. 0.16 g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53 g/L·h vs. 0.26 g/L·h) and yield (0.32 g/g vs. 0.28 g/g). When the initial total sugar concentration was ~120 g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4 g/L, yield of 0.43 g/g sugar consumed, productivity of 0.87 g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass.  相似文献   

20.
Metabolic flux analysis was used to reveal the metabolic distributions in Gluconacetobacter xylinus (CGMCC no. 2955) cultured on different carbon sources. Compared with other sources, glucose, fructose, and glycerol could achieve much higher bacterial cellulose (BC) yields from G. xylinus (CGMCC no. 2955). The glycerol led to the highest BC production with a metabolic yield of 14.7 g/mol C, which was approximately 1.69-fold and 2.38-fold greater than that produced using fructose and glucose medium, respectively. The highest BC productivity from G. xylinus CGMCC 2955 was 5.97 g BC/L (dry weight) when using glycerol as the sole carbon source. Metabolic flux analysis for the central carbon metabolism revealed that about 47.96 % of glycerol was transformed into BC, while only 19.05 % of glucose and 24.78 % of fructose were transformed into BC. Instead, when glucose was used as the sole carbon source, 40.03 % of glucose was turned into the by-product gluconic acid. Compared with BC from glucose and fructose, BC from the glycerol medium showed the highest tensile strength at 83.5 MPa, with thinner fibers and lower porosity. As a main byproduct of biodiesel production, glycerol holds great potential to produce BC with superior mechanical and microstructural characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号