首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crossflow filtration of yeast broth cultivated in molasses   总被引:3,自引:0,他引:3  
A broth of yeast cells cultivated in molasses was crossfiltered with a thin-channel module. The permeation flux gradually decreased at a constant cell concentration. The flux was much lower than that obtained for yeast broth cultivated in yeast extract, polypeptone, and dextrose (YPD) medium during the filtration. The flux did not depend on the membrane pore size (0.45 to 5 mum). The steady-state flux was one-twentieth that calculated for a cake filtration mode from the amount of cake per unit filtration area and the specific resistance of the cake measured in a dead-end filtration apparatus. The lower flux was due to small particles (most of which were less than 1 mum in diameter) in the molasses. The mehanism of crossflow filtration of broths of yeast cells cultivated in molasses was clarified by analysis of the change in flux with time and observations with scanning electron microscopy. At the initial stage of crossflow filtration the yeast cells and particles from the molasses were deposited on the membrane to form the molasses were deposited on the membrane to form a cake in a similar way to dead-end filtration. After the deposition of cells onto the membrane ceased, the fine particles from molasses formed a thin layer, which had higher resistance than the cake formed next to the membrane. The backwashing method was effective to increase the flux. The flux increased low when the pore size was 0.45 to 0.08 mum, but using larger pores of 3 to 5 mum it returned almost to the bases line. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
We have investigated the recovery of exopolysaccharides produced by Sinorhizobium meliloti M5N1 CS bacteria from fermentation broths using different membrane filtration processes: cross-flow filtration with a 7 mm i.d. tubular ceramic membrane of 0.5-microm pores under fixed transmembrane pressure or fixed permeate flux and dynamic filtration with a 0.2 microm nylon membrane using a 16-cm rotating disc filter. With the tubular membrane, the polysaccharide mass flux was mainly limited by polymer transmission that decayed to 10% after 90 min. The mass flux of polymer produced under standard fermentation conditions (70 h at 30 degrees C) stabilized after 70 min to 15 g/h/m(2). This mass flux rises to 36 g/h/m(2) when the mean stirring speed during fermentation is increased and to 123 g/h/m(2) when fermentation is extended to 120 h. In both cases, the mean molecular weight of polysaccharides drops from 4.0 10(5) g/mol under standard conditions to 2.7 10(5) g/mol. A similar reduction in molecular weight was observed when the fermentation temperature was raised to 36 degrees C without benefit to the mass flux. These changes in fermentation conditions have little effect on stabilized permeate flux, but raise significantly the sieving coefficient, due probably to molecular weight reduction and the filamentous aspect of the polymer as observed from SEM photographs. The polymer-mass flux was also increased by reducing transmembrane pressure (TMP) and raising the shear rate by inserting a rod in the membrane lumen. Operation under fixed permeate flux instead of constant TMP inhibited fouling during the first 4 h, resulting in higher sieving coefficients and polymer mass fluxes. The most interesting results were obtained with dynamic filtration because it allows operation at high-shear rates and low TMP. Sieving coefficients remained between 90 and 100%. With a smooth disc, the polysaccharide mass flux remained close to 180 g/h/m(2) at 1500 rpm and cell concentrations from 1 to 3 g/L. When radial rods were glued to the disc to increase wall shear stress and turbulence, the mass flux rose to 275 g/h/m(2) at the same speed and cell concentration.  相似文献   

3.
Factors affecting the performance of crossflow filtration were investigated with a thin-channel module and yeast cells. In crossflow filtration of Saccharomyces cerevisiae cells cultivated with YPD medium (Yeast extract, polypeptone, and dextrose) and suspended in saline, a steady state was attained within several minutes when the cell concentration was low and the circulation flow rate was high. The steady-state flux and the change in flux during the initial unsteady state were explained well by conventional filtration theory, with the amount of cake deposited and the mean specific resistance to the cake measured in a dead-end filtration apparatus used in calculation. When the circulation flow rate was lower than a critical value, a part of the channel of the crossflow filtration module was plugged with cell cake, and thus the steady-state flux was low. In crossflow filtration of suspensions of commercially available baker's yeast, the flux gradually decreased, and the flux after 8 h of filtration was lower than the value calculated by filtration theory. Fine particles contaminating the baker's yeast was responsible for the decrease. A similar phenomenon was responsible for the decrease. A similar phenomenon was observed in crossflow filtration of a broth of S. cerevisiae cells cultivated in molasses medium, which also contains such particles, had no effect of the permeation flux during crossflow filtration. (c) 1993 John Wiley & Sons, Inc.  相似文献   

4.
Periodic backflushing of tubular ceramic membrane filters with filtrate was employed to alleviate membrane fouling in a bioreactor with internal-filtration. As the model system, yeast fermentation was dealt with in this study. There existed optimum backflushing interval and time to give a maximum flux recovery. At 16 g/l of yeast cell concentration, the mean flux increased about 2.5 times by using such repeated operation cycles as consisted of 4.53 minutes for filtration, 4.5 seconds for intermission, and 40 seconds for backflushing. Effects of aeration, agitation speed, and yeast cell concentration were also investigated.  相似文献   

5.
Substantially higher rates of protein and fluid volume transport for microfiltration of yeast suspensions were possible with improved hydrodynamics using centrifugal fluid instabilities called Dean vortices. Under constant permeate flux operation with suspended yeast cells, a helical module exhibited 19 times the filtration capacity of a linear module. For feed containing both BSA and beer yeast under constant transmembrane pressure with diafiltration, about twice as much protein (BSA and other proteins from cell lysis) was transported out of the feed by the helical module as compared with the linear module. The volumetric permeation flux improvements for the helical over the linear module ranged from 18 to 43% for yeast concentrations up to 4.5 dry wt %.  相似文献   

6.
Filtration of an isotonic suspension of baker's yeast through a 0.45‐μm membrane was studied at two different pressures, 40 and 80 kPa, for yeast concentrations ranging from 0.14 to 51 kg/m3 (dry weight). For a yeast volume fraction above 0.06 (~21.8 kg/m3), the porosity of the yeast cake is less dependent on the suspension concentration. For highly diluted suspensions, the specific cake resistance approaches a minimum that depends on the filtration pressure. Correlation functions of cake porosity and specific cake resistance were obtained for the concentration range investigated showing that the Kozeny–Carman coefficient increases when the applied pressure increases. Both filtration pressure and slurry concentration can be process controlled. In the range of moderate yeast concentration, the filtrate flux may be increased by manipulating the filtration pressure and the slurry concentration, thereby improving the overall process efficiency. The complex behavior of yeast cakes at high slurry concentration can be described by a conventional model as long as part of yeast cells are assumed to form aggregates, which behave as single bigger particles. The aggregation effect may be accounted for using a binary mixture model. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

7.
This study concerns the production of yeast extract from spent brewer's yeast using rotary microfiltration as a means to combine debittering and cell debris separation into a single step, without using a toxic alkali wash. The pH of yeast homogenate was found to affect protein yield and bitterness of the product. Rotary filtration of yeast homogenate at various pHs resulted in different percent protein transmissions. These were found to be 5.05%, 9.83%, and 30.83% for pH 5, 6, and 7.5, respectively. The bitterness concentration in the permeate was also found to be higher at higher pHs. Autolysis of the cell homogenate prior to filtration increased protein yield and decreased bitterness considerably. At pH 5.5, the protein transmission was increased to 60% and debittering efficiency was increased from 59% to 86%. The permeate flux and protein productivity could be further increased by increasing the rotational speed, but this resulted in a decrease in debittering efficiency. Thus, the rotational speed should be carefully selected to compromise between the yield and product quality. Furthermore, for the tested rotational speeds of 600 and 1000 rpm, the change in feed flow rate from 11 to 35 L h(-1) changes the flow behavior from turbulent vortex flow to laminar vortex flow, thus decreasing the flux and protein productivity.  相似文献   

8.
The molecular weight of a partially purified alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.1) from the halotolerant yeast Debaryomyces hansenii was estimated to 110,000 by gel filtration. The isoelectric point determined by electrofocusing was at approximately pH 4.4. The enzyme had a broad specificity against phosphomonoesters and also attacked some acid anhydrides. Arsenate, molybdate, and orthophosphate acted as competitive inhibitors. Various metal-binding agents inhibited enzyme activity. A zinc addition almost completely reversed the EDTA inhibition. Magnesium stimulated enzyme activity and was required for maintenance of activity at high concentrations of Na+. Increasing glycerol concentration increased the value of the Michaelis constant (Km) and decreased the maximum velocity (V). Solutions equimolar in KCl and NaCl stimulated enzyme activity by increasing V, whereas the Km was almost unaffected by salt concentration. Enzyme extracted from cells cultured at low salinity was indistinguishable from that of cells grown in the presence of 2.7 M NaCl with respect to several criteria.  相似文献   

9.
Cross-flow microfiltration is an important step in separating Baker’s yeast (Saccharomyces cerevisiae) from aqueous suspension in many processes. However the permeate flux often declines rapidly due to colloidal fouling of membranes and concentration polarisation. The present work explores the possibility of maintaining acceptable permeate flux by co-current sparging of gas along with the feed, which would scour away colloidal deposits and reduce concentration polarisation of membranes. In this work, both washed and unwashed yeast were used to study the effect of washing to reduce protein fouling of membranes. It was found that permeate flux increased by 45% for liquid throughput of 75 kg/h for a feed concentration of 2.0 kg/m3 of washed yeast as compared with unwashed yeast suspension without gas sparging. For washed yeast suspension, the increase in gas flow rate from 0.5 lpm to 1.5 lpm (30 l/h to 90 l/h) had beneficial effect on permeate flux. It is concluded that in the present case, the gas flow rate should be less than or equal to the liquid flow rate for enhancement of permeates flux.  相似文献   

10.
Filtration of ethanol fermentation medium and broth by using symmetric and asymmetric ceramic membranes has been studied in an internal filter bioreactor. Factors studied included membrane structure and pore size, medium sterilization, and concentrations of glucose, yeast extract in the medium, yeast cell and protein in broth. The aim was to determine the main factors responsible for the decline in filtration performance during ethanol fermentation by Saccharomyces cerevisiae. Flux index (Fi) of a new concept has been developed to evaluate the degree of flux decline during the membrane fouling process. Fi was defined as the ratio of the membrane flux at certain filtration time (t?=?t) to the initial (t?=??0) flux of pure water, not the initial (t?=?+0) flux of the test fluid. Flux with sterilized medium was approximately two-fold higher than that with unsterilized medium although the reason could not be explained clearly. Glucose, interaction between glucose and yeast extract, yeast cells, and proteins in fermentation broth were found to play an important part in membrane fouling. Fi of the symmetric membrane decreased to a less extent than that of the asymmetric membrane with increasing glucose concentration. But, the result with various yeast cell concentrations turned out to be contrary. Fouling was more serious for asymmetric membrane during the filtration of fermentation supernatant. This was thought to be due to different fouling mechanisms for the two types of membrane.  相似文献   

11.
High ethanol productivities were obtained by cell recycle cultures of yeast and bacterial strains at a dry cell concentration of 200 kg cells m–3 using a new membrane bioreactor system. The filtration rates of the cultures were stabilized by removing the microbial cake on the filter with periodic back flows of the fermentation gas through the filter. For instance, the filtration flux of 0.023 m3m–2h–1 was maintained for 30 h with the periodic cleaning of the filter, whereas it decreased at a half time of 2 h without the cleaning. Ethanol productivity, ethanol concentration and filtration flux attained were: 68.7 kg/(m3 · h), 62.7 kg/m3 and 0.029 m3m–2h–1 for Saccharomyces carlsbergensis, LAM1068, the respective values for Zymomonas mobilis, ZM4, were: 93.7, 33 5 and 0.074.  相似文献   

12.
Summary The effect of agitation and aeration on filtration of Anchusa officinalis culture in a stirred tank bioreactor integrated with an internal filter unit was investigated. Increases in suction head of the pump that drove the filtration process were measured at impeller speeds of 100 and 200 rpm. Surprisingly, suction head attained at 200 rpm was about 40% higher than at 100 rpm. Direct observation of the cake deposition process in the reactor using a dilute cell suspension revealed that the filter cake formed at 100 rpm was thicker, but less compact. Aeration at 0.4 vvm was shown to have little effect on the filtration rate, since the bulk fluid flow was dominated by the impeller hydrodynamics. The initial flux can be recovered by filter backwashing with compressed air at a flow rate of 0.6 vvm for a duration of 5 minutes.  相似文献   

13.
The capacity of virus filters used in the purification of therapeutic proteins is determined by the rate and extent of membrane fouling. Current virus filtration membranes have a complex multilayer structure that can be used with either the skin-side up or with the skin-side facing away from the feed, but there is currently no quantitative understanding of the effects of membrane orientation or operating conditions on the filtration performance. Experiments were performed using Millipore's Viresolve 180 membrane under both constant pressure and constant flux operation with sulfhydryl-modified BSA used as a model protein. The capacity with the skin-side up was greater during operation with constant flux and at low transmembrane pressures, with the flux decline or pressure rise due primarily to osmotic pressure effects. In contrast, data obtained with the skin-side down showed a slower, steady increase in total resistance with the cumulative filtrate volume, with minimal contribution from osmotic pressure. The capacity with the skin-side down was significantly greater than that with the skin-side up, reflecting the different fouling mechanisms in the different membrane orientations. These results provide important insights for the design and operation of virus filtration membranes.  相似文献   

14.
The periodical stopping of permeation flow was applied to increase the permeation flux in crossflow filtration of commercially available baker's yeast cell suspension. The permeation flux after 3 h filtration in the crossflow filtration increased to 8 x 10(-5) m(3) /m(2) s (290 L/m(2) h) from 2 x 10(-5) m(3)/m(2) s (72 L/m(2) h) by applying the periodical stopping of permeation. Introduction of air bubbles during the stopping period of permeation further increased the flux.(c) John Wiley & Sons, Inc.  相似文献   

15.
Effectiveness of surfactant precoat treatment of the polysulfone ultrafilter was first investigated for reduction of membrane fouling in ultrafiltration of antifoam. Fifteen different surfactants, including alcohols and synthetic nonionic surfactants, were tested. In general, pretreatment with nonionic surfactant gave a larger flux than that with alcohol did. The flux increase by pretreatment with nonionic surfactant depended on a hydrophile lipophile balance (HLB) value and type of hydrophobic tail. The most effective surfactant for reducing antifoam fouling among the 15 surfactants was Brij-58 which has an HLB value of 16 and a straight alkyl hydrophobic chain. The ultrafiltration flux of the membrane treated with Brij-58 was almost three times larger than that of untreated membrane. The precoat treatment with Brij-58 was the most effective for reducing antifoam fouling in terms of rejection properties.Furthermore, flux was also improved by the surfactant pretreatment in ultrafiltration of model process streams, such as fermentation media, broth, and yeast suspension with or without antifoam. The surfactant Brij-58 was found to be more effective for reducing membrane fouling in ultrafiltration of model stream YG compared with ethanol or Brij-35. The mean flux increase by the pretreatment with Brij-58 was about 80% in ultrafiltration of the model stream without antifoam. When antifoam was added to the model stream, flux was almost doubled by the pretreatment with Brij-58. The effectiveness of surfactant precoat treatment for reducing membrane fouling was also confirmed in terms of rejection properties. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
The performance of a bioreactor with a microfiltration module for the production of an intracellular enzyme, superoxide dismutase (SOD), by Streptococcus lactis is described. The fermentation system involving the bioreactor enables the continuous removal of metabolites inhibitory for cell growth and the complete recycling of the cells to the bioreactor. In a fed-batch (FB) culture with filtration, in which the main metabolite, lactic acid, in the culture broth was maintained at a low concentration, S. lactis was cultivated to the high concentration of 15.5 g-dry cells/1. The SOD content of the cells remained at almost a constant level throughout the cultivation and the productivity of SOD as well as cells per unit time was 4.3-fold as high as that in the case of a conventional batch culture without filtration. Repeating the FB culture with filtration enhanced the productivities of SOD and cells further, as compared with those in the case of the FB culture with filtration.  相似文献   

17.
A novel method of producing controlled vortices was used to reduce both concentration polarization and membrane fouling during microfiltration of Saccharomyces cerevisiae broth suspensions. The method involves flow around a curved channel at a sufficient rate so as to produce centrifugal instabilities (called Dean vortices). These vortices depolarize the build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up during microfiltration of 0 to 0.55 dry wt% yeast broth were investigated. Flux improvements of over 60% for 0.25 dry wt% yeast broth for flow with over that without Dean vortices were observed. This beneficial effect increased with increasing retentate flow rate and increasing transmembrane pressure and decreased with increasing concentration of suspended matter. Similar behavior was observed whether the cells were viable of killed. the improvement in flux in the presence over that in the absence of vortices correlated well with centrifugal force or azimuthal velocity squared. The relative cake resistances increased with reservoir yeast concentration. These values with vortices increased from 62% to 75% of that without vortices with increasing yeast concentration. The ratio of the cake thicknesses in the limiting case (at high feed concentration) was 3.25. These results suggest that self-cleaning spiral vortices could be effective in maintaining good and steady microfiltration performance with cell suspensions other than those tested. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
In glutamate fermentations by Corynebacterium glutamicum, higher glutamate concentration could be achieved by constantly controlling dissolved oxygen concentration (DO) at a lower level; however, by-product lactate also severely accumulated. The results of analyzing activities changes of the two key enzymes, glutamate and lactate dehydrogenases involved with the fermentation, and the entire metabolic network flux analysis showed that the lactate overproduction was because the metabolic flux in TCA cycle was too low to balance the glucose glycolysis rate. As a result, the respiratory quotient (RQ) adaptive control based “balanced metabolic control” (BMC) strategy was proposed and used to regulate the TCA metabolic flux rate at an appropriate level to achieve the metabolic balance among glycolysis, glutamate synthesis, and TCA metabolic flux. Compared with the best results of various DO constant controls, the BMC strategy increased the maximal glutamate concentration by about 15% and almost completely repressed the lactate accumulation with competitively high glutamate productivity.  相似文献   

19.
To develop a highly efficient cell harvest step under time constraint, a novel rotating disk dynamic filtration system was studied on the laboratory scale (0.147-ft.(2) nylon membrane) for concentrating recombinant yeast cells containing an intracellular product. The existing cross-flow microfiltration method yielded pseudo-steady state flux values below 25 LMH (L/m(2). h) even at low membrane loadings (10 L/ft.(2)). By creating high shear rates (up to 120,000(-1)) on the membrane surface using a rotating solid disk, this dynamic filter has demonstrated dramatically improved performance, presumably due to minimal cake buildup and reduced membrane fouling. Among the many factors investigated, disk rotating speed, which determines shear rates and flow patterns, was found to be the most important adjustable parameter. Our experimental results have shown that the flux increases with disk rotating speed, increases with transmembrane pressure at higher cell concentrations, and can be sustained at high levels under constant flux mode. At a certain membrane loading level, there was a critical speed below which it behaved similarly to a flat sheet system with equivalent shear. Average flux greater than 200 LMH has been demonstrated at 37-L/ft.(2) loading at maximum speed to complete sixfold concentration and 15-volume diafiltration for less than 100 min. An order of magnitude improvement over the crossflow microfiltration control was projected for large scale production. This superior performance, however, would be achieved at the expense of additional power input and heat dissipation, especially when cell concentration reaches above 80 g dry cell weight (DCW)/L. Although a positive linear relationship between power input and dynamic flux at a certain concentration factor has been established, high cell density associated with high viscosity impacted adversely on effective average shear rates and, eventually, severe membrane fouling, rather than cake formation, would limit the performance of this novel system. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
Transvascular fluid flux was induced in six isolated blood-perfused canine lobes by increasing and decreasing hydrostatic inflow pressure (Pi). Fluid flux was followed against the change in concentration of an impermeable tracer (Blue Dextran) measured directly with a colorimetric device. The time course of fluid flux was biphasic with an initial fast transient followed by a slow phase. Hematocrit changes unrelated to fluid flux occurred due to the Fahraeus effect, and their contribution to the total color signal was subtracted to determine the rate of fast fluid flux (Qf). Qf was related to Pi to derive fast-phase conductance (Kf). Slow-phase Kf was calculated from the constant rate of change of lobe weight. For a mean change in Pi of 7 cmH2O, 40% of the color signal was due to fluid flux. Fast- and slow-phase Kf's were 0.86 +/- 0.15 and 0.27 +/- 0.05 ml X min-1. cmH2O-1 X 100 g dry wt-1. The fast-phase Kf is smaller than that reported for plasma-perfused lobes. Possible explanations discussed are the nature of the perfusate, the mechanical properties of the interstitium, and the slow rate of rise of the driving pressure at the filtration site on the basis of a distributed model of pulmonary vascular compliance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号