首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
2.
The effect of maturation and of two lipid modulators supplementation along in vitro maturation (IVM) on fatty acid (FA) and dimethylacetal (DMA) composition of porcine cumulus oocyte complexes (COC) were studied. Abattoir-derived immature COC were analyzed for FA and DMA or submitted to IVM as follows: control group; t10,c12 CLA group, t10,c12 CLA supplementation for 44 h; Forskolin group, forskolin supplementation during the initial 2 h; t10,c12 CLA?+?forskolin group, t10,c12 CLA for 44 h and forskolin for just 2h. Each experimental group had five replicates. FA analysis of oocytes, cumulus cells (CC), follicular fluid, and culture media were performed by gas–liquid chromatography. Oocytes and their CC had different FA composition. Oocytes were richer in saturated FA (SFA) preferentially maintaining their FA profile during maturation. Mature CC had the highest polyunsaturated FA (PUFA) content. Five individual and total SFA, and monounsaturated FA (MUFA), notably oleic acid (c9-18:1), percentages were lower (P?≤?0.023) in mature than in immature CC. t10,c12 CLA was accumulated by COC from t10,c12 CLA and t10,c12 CLA?+?forskolin groups, mostly in CC where MUFA and an eicosatrienoic isomer decreased (P?≤?0.043). Nevertheless, PUFA or FA and DMA total content were not affected. Arachidonic acid was reduced in t10,c12 CLA?+?forskolin CC and hexadecanal-DMA-16:0 in t10,c12 CLA CC. Forskolin alone increased (P?≤?0.043) c9-18:1 in oocytes. In conclusion, maturation process clearly changed porcine COC FA and DMA profiles, mostly of CC, also more susceptible to modifications induced by t10,c12 CLA. This possibility of manipulating COC lipid composition during IVM could be used to improve oocyte quality/cryopreservation efficiency.  相似文献   

3.
4.
Caloric restriction (CR) is one of the most promising strategies for weight loss but is associated with loss of lean mass, whereas compounds such as trans-10,cis-12 conjugated linoleic acid (t10-c12 CLA) have been promoted as antiobesity agents. To compare the mechanisms of weight reduction by CR and t10-c12 CLA, body composition, glucose control, and characteristics of adipose tissue with respect to cell turnover (stem cells and preadipocytes, apoptosis and autophagy) and Tbx-1 localization were examined in obese db/db mice and lean C57BL/6J mice undergoing CR or fed CLA isomers (0.4% w/w c9-t11 or t10-c12) for 4 weeks. Our findings show that the t10-c12 CLA reduced whole-body fat mass by decreasing all fat depots (visceral, inguinal, brown/interscapular), while CR lowered both whole-body fat and lean mass in obese mice. t10-c12 CLA elevated blood glucose in both obese and lean mice, while glycemia was not altered by CR. The adipocyte stem cell population remained unchanged; however, t10-c12 CLA reduced and CR elevated the proportion of immature adipocytes in obese mice, suggesting differential effects on adipocyte maturation. t10-c12 CLA reduced apoptosis (activated caspase-3) in both obese and lean mice but did not alter autophagy (LC3II/LC3I). Nuclear Tbx-1, a marker of metabolically active beige adipocytes, was greater in the adipose of t10-c12 CLA-fed animals. Thus, weight loss achieved via t10-c12 CLA primarily involves fat loss and more cells with Tbx-1 localized to the nucleus, while CR operates through a mechanism that reduces both lean and fat mass and blocks adipocyte differentiation.  相似文献   

5.
Feeding dietary supplements containing trans-10, cis-12-conjugated linoleic acid (t10,c12-CLA) has been shown to induce milk fat depression in cows, ewes and goats. However, the magnitude of the response is apparently less pronounced in lactating goats. The objective of this study was to evaluate the effects of increasing doses of CLA methyl esters (CLA-ME) on milk production, composition and fatty-acid profile of dairy goats. Eight Toggenburg goats were separated in two groups (four primiparous and four multiparous) and received the following dietary treatments in a 4×4 Latin Square design: CLA0: 45 g/day of calcium salts of fatty acids (CSFA); CLA15; 30 g/day of CSFA+15 g/day of CLA-ME; CLA30: 15 g/day of CSFA+30 g/day of CLA-ME; and CLA45: 45 g/day of CLA-ME. The CLA-ME supplement (Luta-CLA 60) contained 29.9% of t10,c12-CLA; therefore, the dietary treatments provided 0, 4.48, 8.97 and 13.45 g/day of t10,c12-CLA, respectively. Feed intake, milk production, concentration and secretion of milk protein and lactose, body condition score and body weight were unaffected by the dietary treatments. Milk fat secretion was reduced by 14.9%, 30.8% and 40.5%, whereas milk fat concentration was decreased by 17.2%, 33.1% and 40.7% in response to CLA15, CLA30 and CLA45, respectively. Secretions of both de novo synthesized and preformed fatty acids were progressively reduced as the CLA dose increased, but the magnitude of the inhibition was greater for the former. There was a linear reduction in most milk fat desaturase indexes (14:1/14:0, 16:1/16:0, 17:1/17:0 and 18:1/18:0). Milk fat t10,c12-CLA concentration and secretion increased with the CLA dose, and its apparent transfer efficiency from diet to milk was 1.18%, 1.17% and 1.21% for CLA15, CLA30 and CLA45 treatments, respectively. The estimated energy balance was linearly improved in goats fed CLA.  相似文献   

6.
Conjugated linoleic acid (CLA) refers to a group of positional and geometrical isomers of linoleic acid in which the double bonds are conjugated. Dietary CLA has been associated with various health benefits although details of its molecular mode of action remain elusive. The effect of CLA supplemented to palm oil-based diets in Wistar rats, as a mixture of both or isolated c9,t11 and t10,c12 isomers, was examined on water and glycerol membrane permeability of kidney proximal tubule. Although water permeability was unaltered, an increase in glycerol permeability was obtained for the group supplemented with CLA mixture, even though the activation energy for glycerol permeation remained high. This effect was correlated with an increased CLA isomeric membrane incorporation for the same dietary group. These results suggest that diet supplementation with CLA mixture, in contrast to its individual isomers, may enhance membrane fluidity subsequently raising kidney glycerol reabsorption.  相似文献   

7.
We have previously shown that the 9c,11t-conjugated linoleic acid (CLA) concentration was always significantly higher than the 10t,12c-CLA concentration following the administration of these compounds to mice and rats, and considered that structural differences between the conjugated double bonds in these isomers affected absorption in the small intestine. This study investigates the absorption of CLA in the rat intestine by a lipid absorption assay of lymph from the thoracic duct. In Study 1, we used safflower oil and a triacylglycerol form of CLA (CLA-TG), while in Study 2, we used 9c,11t-CLA and 10t,12c-CLA. The cumulative recovery of CLA was lower than that of linoleic acid until two hours after sample administration. There was no difference in the extent of lymphatic recovery of 9c,11t-CLA and 10t,12c-CLA after the administration of CLA-TG, 9c,11t-CLA, and 10t,12c-CLA to the rats, suggesting that geometrical and positional isomerism of the conjugated double bonds did not influence the absorption.  相似文献   

8.
Animal and human studies have indicated that fatty acids such as the conjugated linoleic acids (CLA) found in milk could potentially alter the risk of developing metabolic disorders including diabetes and cardiovascular disease (CVD). Using susceptible rodent models (apoE−/− and LDLr−/− mice) we investigated the interrelationship between mouse strain, dietary conjugated linoleic acids and metabolic markers of CVD. Despite an adverse metabolic risk profile, atherosclerosis (measured directly by lesion area), was significantly reduced with t-10, c-12 CLA and mixed isomer CLA (Mix) supplementation in both apoE−/− (p<0.05, n = 11) and LDLr−/− mice (p<0.01, n = 10). Principal component analysis was utilized to delineate the influence of multiple plasma and tissue metabolites on the development of atherosclerosis. Group clustering by dietary supplementation was evident, with the t-10, c-12 CLA supplemented animals having distinct patterns, suggestive of hepatic insulin resistance, regardless of mouse strain. The effect of CLA supplementation on hepatic lipid and fatty acid composition was explored in the LDLr−/− strain. Dietary supplementation with t-10, c-12 CLA significantly increased liver weight (p<0.05, n = 10), triglyceride (p<0.01, n = 10) and cholesterol ester content (p<0.01, n = 10). Furthermore, t-10, c-12 CLA also increased the ratio of 18∶1 to 18∶0 fatty acid in the liver suggesting an increase in the activity of stearoyl-CoA desaturase. Changes in plasma adiponectin and liver weight with t-10, c-12 CLA supplementation were evident within 3 weeks of initiation of the diet. These observations provide evidence that the individual CLA isomers have divergent mechanisms of action and that t-10, c-12 CLA rapidly changes plasma and liver markers of metabolic syndrome, despite evidence of reduction in atherosclerosis.  相似文献   

9.
In a 2×2 factorial design, 12 Thai Native and 12 Holstein bulls were fed ad libitum a total mixed ration (20 : 80; roughage : concentrate) with whole cottonseed (WCS) or sunflower seed (SFS) as oilseed sources. The rations contained 7% crude fat and were fed for 90 days. Plasma was taken at three times during the experiment, and at slaughter the longissimus dorsi and subcutaneous fat were sampled for fatty acid analysis. Ration did not affect rumen fermentation parameters. The plasma fatty acid profile was not affected by ration. In subcutaneous fat, a ration×breed interaction for the saturated fatty acid (SFA) and c9t11 CLA proportions was observed, resulting from larger differences between the rations in Thai Native compared with Holstein bulls. The WCS ration resulted in higher proportions of SFA and lower proportions of monounsaturated fatty acids and c9,t11 CLA compared with the SFS ration (P<0.01). In the intramuscular fat, the WCS ration was also associated with a lower c9t11 CLA proportion (P<0.01) and higher SFA proportion (P<0.05). The intramuscular proportion of polyunsaturated acids was higher and the proportion of SFA was lower in Thai Native compared with Holstein bulls (P<0.05), irrespective of ration.  相似文献   

10.
BackgroundTrans-10, cis-12 (t10-c12) CLA treatment reduces lipid accumulation in differentiating mouse and human adipocytes, and decreases fat mass in mice, yet the mechanism of action remains unknown.ObjectiveThis study investigated the effect of the cis-9, trans-11 (c9-t11) and t10-c12 CLA isomers on the Wnt/β-catenin pathway, which has been reported to inhibit adipogenesis by down-regulating PPARγ.ResultsWe observed that t10-c12 CLA treatment of 3T3-L1 adipocytes increases the levels of β-catenin and Ser-675 phosphorylated β-catenin due to inhibition of its degradation. These changes in β-catenin were not linked to either the Wnt/β-catenin agonist Wnt10b or other upstream effectors such as SFRP-5. Paradoxically, the presence of higher amounts of β-catenin did not elevate cyclin D1 levels, which is recognized as a critical target gene. Neither of the CLA isomers affected the localization of β-catenin in the cytosol and nucleus as determined by immunofluorescence microscopy. However, subcellular fractionation suggested the level of cytosolic β-catenin was reduced in t10-c12 CLA treated cells. Immunoprecipitation revealed that t10-c12 CLA increased the interaction of β-catenin and PPARγ.Conclusionst10-c12-CLA inhibits adipocyte differentiation by increasing β-catenin stability in 3T3-L1 adipocytes, thus enhancing sequestration of PPARγ in an inactive complex, which prevents progression of adipogenesis.  相似文献   

11.
An experiment was conducted to examine whether increased CLA in milk of dairy cows fed fresh pasture compared with alfalfa and corn silages was because of ruminal or endogenous synthesis. Eight Holsteins were fed a total mixed ration using alfalfa and corn silages as the forage source in confinement or grazed in a replicated crossover design. The proportion of total fatty acids as CLA (primarily c9, t11-18:2) in g/100 g was 0.44 v. 0.28 in ruminal digesta, 0.89 v. 0.53 in omasal digesta and 0.71 v. 1.06 in milk during confinement feeding and grazing, respectively. Blood plasma CLA was 0.54 v. 1.05 mg/l for the two treatments, respectively. The increased concentration of CLA in milk with grazing likely resulted from increased synthesis through desaturation of t11-18:1 in the mammary gland.  相似文献   

12.
13.
14.
The ruminant trans fatty acid vaccenic acid (tVA) favorably alters markers of inflammation. However, it is not yet clear whether these effects are attributed to its endogenous partial conversion to c9,t11-CLA, which is known to possess anti-inflammatory properties. We compared the cytokine reducing potential of tVA to c9,t11-CLA in human T-helper (Th) cells as a main source of cytokine production during inflammation. Secondly, we assessed whether a bioconversion of tVA to c9,t11-CLA via stearoyl-CoA desaturase (SCD) encoded activity takes place in peripheral blood mononuclear cells (PBMC) in order to relate the outcomes of intracellular cytokine measurement to the degree of conversion. TVA reduced the percentage of both IL-2 and TNF-α expressing Th cells significantly, but to a lesser extent compared to c9,t11-CLA, as determined by flow cytometry after alloreactive stimulation of PBMC. Pre-treatment with the selective PPARγ antagonist T0070907 largely re-established the IL-2 and TNF-α positive Th cell population in both tVA and c9,t11-CLA treated cultures. Interestingly, while the portion of tVA dose-dependently increased within the cellular lipid fraction, the initially marginal amount of c9,t11-CLA remained unaltered. However, SCD mRNA although abundantly expressed in PBMC was not regulated by tVA. Conclusively, these results suggest that the cytokine reducing effect of tVA in human T cells is independent of c9,t11-CLA, since no bioconversion occurred. Moreover, the data provide evidence that tVA mechanistically acts in a manner similar to c9,t11-CLA.  相似文献   

15.
Previously, feeding fish oil (FO) and sunflower seeds to dairy cows resulted in the greatest increases in the concentrations of vaccenic acid (VA, t11 C18:1) and conjugated linoleic acid (CLA) in milk fat. The objective of this study was to evaluate the effects of forage level in diets containing FO and sunflower oil (SFO) on the production of trans C18:1 and CLA by mixed ruminal microbes. A dual-flow continuous culture system consisting of three fermenters was used in a 3 × 3 Latin-square design. Treatments consisted of (1) 75:25 forage:concentrate (HF); (2) 50:50 forage:concentrate (MF); and (3) 25:75 forage:concentrate (LF). FO and SFO were added to each diet at 1 and 2 g/100 g dry matter (DM), respectively. The forage source was alfalfa pellets. During 10-day incubations, fermenters were fed treatment diets three times daily (140 g/day, divided equally between three feedings) as TMR diet. Effluents from the last 3 days of incubation were collected and composited for analysis. The concentration of trans C18:1 (17.20, 26.60, and 36.08 mg/g DM overflow for HF, MF, and LF treatments, respectively) increased while CLA (2.53, 2.35, and 0.81 mg/g DM overflow) decreased in a linear manner (P < 0.05) as dietary forage level decreased. As dietary forage levels decreased, the concentrations of t10 C18:1 (0.0, 10.5, 33.5 mg/g DM) in effluent increased ( P < 0.05) and t10c12 CLA (0.08, 0.12, 0.35 mg/g DM) tended to increases (P < 0.09) linearly. The concentrations of VA (14.7, 13.9, 0.0 mg/g DM) and c9t11 CLA (1.78, 1.52, 0.03 mg/g DM) in effluent decreased in a linear manner ( P < 0.05) as dietary forage levels decreased. Decreasing dietary forage levels resulted in t10 C18:1 and t10c12 CLA replacing VA and c9t11 CLA, respectively, in fermenters fed FO and SFO.  相似文献   

16.
17.
Trans-10, cis-12 conjugated linoleic acid (t10c12 CLA) reduces triglyceride (TG) levels in adipocytes through multiple pathways, with AMP-activated protein kinase (AMPK) generally facilitating, and peroxisome proliferator-activated receptor γ (PPARγ) generally opposing these reductions. Sirtuin 1 (SIRT1), a histone/protein deacetylase that affects energy homeostasis, often functions coordinately with AMPK, and is capable of binding to PPARγ, thereby inhibiting its activity. This study investigated the role of SIRT1 in the response of 3T3-L1 adipocytes to t10c12 CLA by testing the following hypotheses: 1) SIRT1 is functionally required for robust TG reduction; and 2) SIRT1, AMPK, and PPARγ cross regulate each other. These experiments were performed by using activators, inhibitors, or siRNA knockdowns that affected these pathways in t10c12 CLA-treated 3T3-L1 adipocytes. Inhibition of SIRT1 amounts or activity using siRNA, sirtinol, nicotinamide, or etomoxir attenuated the amount of TG loss, while SIRT1 activator SRT1720 increased the TG loss. SRT1720 increased AMPK activity while sirtuin-specific inhibitors decreased AMPK activity. Reciprocally, an AMPK inhibitor reduced SIRT1 activity. Treatment with t10c12 CLA increased PPARγ phosphorylation in an AMPK-dependent manner and increased the amount of PPARγ bound to SIRT1. Reciprocally, a PPARγ agonist attenuated AMPK and SIRT1 activity levels. These results indicated SIRT1 increased TG loss and that cross regulation between SIRT1, AMPK, and PPARγ occurred in 3T3-L1 adipocytes treated with t10c12 CLA.  相似文献   

18.
The effects of feeding Cistus ladanifer (Cistus) and a blend of soybean and linseed oil (1 : 2 vol/vol) on fatty acid (FA) composition of lamb meat lipids and messenger RNA (mRNA) expression of desaturase enzymes was assessed. In total, 54 male lambs were randomly assigned to 18 pens and to nine diets, resulting from the combination of three inclusion levels of Cistus (50 v. 100 v. 200 g/kg of dry matter (DM)) and three inclusion levels of oil (0 v. 40 v. 80 g/kg of DM). The forage-to-concentrate ratio of the diets was 1 : 1. Longissimus muscle lipids were extracted, fractionated into neutral (NL) and polar lipid (PL) and FA methyl esters obtained and analyzed by GLC. The expression of genes encoding Δ5, Δ6 and Δ9 desaturases (fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2) and stearoyl CoA desaturase (SCD)) was determined. Intramuscular fat, NL and PL contents were not affected by oil or Cistus. Oil supplementation reduced (P<0.05) 16:0, c9-16:1, 17:0, c9-17:1 and c9-18:1 FA and increased (P<0.05) 18:2n-6, 18:3n-3 and the majority of biohydrogenation intermediates in NL. Cistus alone had few effects on FA of NL but interacted with oil (P<0.05) by increasing t10-18:1,t10,t12-18:2,t10,c12-18:2 and t7,c9-18:2. The t10-/t11-18:1 ratio increased with both Cistus and oil levels. The c9, t11-18:2 did not increase (P<0.05) with both oil and Cistus dietary inclusion. Oil reduced c9-16:1, 17:0, c9-17:1,c9-18:1, 20:4n-6, 22:4n-6 and 20:3n-9 proportions in PL, and increased 18:2n-6, 18:3n-3, 20:3n-3 and of most of the biohydrogenation intermediates. The Cistus had only minor effects on FA composition of PL. Cistus resulted in a reduction (P<0.05) of 20:5n-3 and 22:6n-3 in the meat PL. The expression level of SCD mRNA increased (P=0.015) with Cistus level, although a linear relationship with condensed tannins intake (P=0.11) could not be established. FADS1 mRNA expressed levels increased linearly (P=0.019) with condensed tannins intake. In summary, the inclusion of Cistus and oil in 1 : 1 forage-to-concentrate ratio diets resulted in a large increase in t10-18:1 and no increase in c9,t11-18:2 or n-3 long chain poor in polyunsaturated fatty acids in lamb meat.  相似文献   

19.
Adiponectin is positively correlated with insulin sensitivity. Hydroxycinnamic acid derivatives (HADs), observed ubiquitously in plants, have some physiological functions. In this study, we investigated the effect of HADs on serum adiponectin concentrations in mice and on adiponectin secretion of 3T3-L1 adipocytes. In mice, serum adiponectin concentrations were increased by γ-oryzanol administration. CAPE, curcumin, and trans-ferulic acid markedly enhanced the adiponectin secretion of 3T3-L1 adipocytes, but not γ-oryzanol. To clarify the effects of γ-oryzanol in mice or the effects of HADs on the underlying mechanisms of adiponectin secretion, we further investigated the effect of HADs on adiponectin secretion in the NF-κB activation state. Although the adiponectin secretion was reduced in the presence of lipopolysaccharide plus TNF-α and IFN-γ, only γ-oryzanol supported the activity of adiponectin secretion under NF-κB activated condition. The results indicate that these HADs might regulate adiponectin secretion by the inhibition of NF-κB activation. HADs might be effective for ameliorating type 2 diabetes.  相似文献   

20.
In this study, we hypothesize that the biologically active isomers of conjugated linoleic acid (CLA), cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) CLA, have different effects on early and late stages 3T3-L1 preadipocyte differentiation. Both c9-t11 and t10-c12CLA stimulated early stage pre-adipocyte differentiation (day 2), while t10-c12CLA inhibited late differentiation (day 8) as determined by lipid droplet numbers and both perilipin-1 levels and phosphorylation state. At day 8, the adipokines adiponectin, chemerin and adipsin were all reduced in t10-c12CLA treated cells versus control cells. Immunofluorescence microscopy showed perilipin-1 was present solely on lipid droplets on day 8 in t10-c12 treated 3T3-L1 cells, whereas preilipin-1 was also located in the perinuclear region in control and c9-t11 treated cells. The t10-c12CLA isomer also decreased levels of hormone-sensitive lipase and inhibited lipolysis. These findings indicate that the decrease in lipid droplets caused by t10-c12CLA is the result of an inhibition of lipid droplet production during adipogenesis rather than a stimulation of lipolysis. Additionally, treatment with Gö6976 blocked the effect of t10-c12CLA on perilipin-1 phosphorylation, implicating PKCα in perilipin-1 phosphorylation, and thus a regulator of triglyceride catabolism. These data are supported by evidence that t10-c12CLA activated PKCα. These are the first data to show that CLA isomers can affect lipid droplet dynamics in adipocytes through PKCα.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号