首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We explored the effects of chronic alpha-linolenic acid dietary deficiency on serotoninergic neurotransmission. In vivo synaptic serotonin (5-HT) levels were studied in basal and pharmacologically stimulated conditions using intracerebral microdialysis in the hippocampus of awake 2-month-old rats. We also studied the effects of reversion of the deficient diet on fatty acid composition and serotoninergic neurotransmission. A balanced (control) diet was supplied to deficient rats at different stages of development, i.e. from birth, 7, 14 or 21 days of age. We demonstrated that chronic n-3 polyunsaturated fatty acid dietary deficiency induced changes in the synaptic levels of 5-HT both in basal conditions and after pharmacological stimulation with fenfluramine. Higher levels of basal 5-HT release and lower levels of 5-HT-stimulated release were found in deficient than in control rats. These neurochemical modifications were reversed by supply of the balanced diet provided at birth or during the first 2 weeks of life through the maternal milk, whereas they persisted if the balanced diet was given from weaning (at 3 weeks of age). This suggests that provision of essential fatty acids is durably able to affect brain function and that this is related to the developmental stage during which the deficiency occurs.  相似文献   

2.
3.
The biochemistry of n-3 polyunsaturated fatty acids   总被引:27,自引:0,他引:27  
  相似文献   

4.
n-3 polyunsaturated fatty acids and the cardiovascular system   总被引:7,自引:0,他引:7  
n-3 Polyunsaturated fatty acids, mainly those contained in fish oils, are candidates for inclusion in secondary prevention programmes for coronary heart disease, based on the results of recent randomized trials in humans. Marine n-3 polyunsaturated fatty acids retard coronary atherosclerosis and appear to prevent fatal arrhythmias; and they decrease mortality subsequent to myocardial infarction.  相似文献   

5.
Dietary supplementation with n-3 polyunsaturated fatty acids (PUFA) is regarded as beneficial for the prevention and treatment of atherosclerosis and thrombosis and chronic inflammatory diseases like rheumatoid arthritis and psoriasis. It may be possible to treat some acute diseases like acute myocardial infarction or acute rejection of grafted organs if it is possible to make n-3 PUFA take effect quickly (in hours instead of days). Three sets of experiments were done. In Experiment 1, emulsion of trieicosapentaenoyl-glycerol (EPA-TG) and tridocosahexaenoyl-glycerol was infused through rabbit ear veins, and the leukotriene B4/B5 production from polymorphonuclear leukocytes was measured at different time points by high-performance liquid chromatography. In Experiment 2, delayed type hypersensitivity (DTH) of mice was measured with sheep red blood cells as an antigen. Pure n-3 PUFA emulsions or a control solution were infused through tail veins just before the second challenge of the antigen. DTH was measured 24 hr after the second challenge. In Experiment 3, human natural killer cell activity was measured using K562 target cells before and after the infusion of pure EPA-TG emulsion to an antecubital vein. Leukotriene B4 production by rabbit polymorphonuclear leukocytes was depressed by 40% by EPA-TG infusion. DTH was suppressed almost completely by n-3 PUFA infusion. Natural killer cell activity was suppressed almost completely by EPA-TG infusion in 8 hr. DTH, natural killer cell activity, and leukotriene B4 production are probably related to acute rejection of grafted organs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Human subjects consuming fish oil showed a significant suppression of cyclooxygenase-2 (COX-2) expression in blood monocytes when stimulated in vitro with lipopolysaccharide (LPS), an agonist for Toll-like receptor 4 (TLR4). Results with a murine monocytic cell line (RAW 264.7) stably transfected with COX-2 promoter reporter gene also demonstrated that LPS-induced COX-2 expression was preferentially inhibited by docosahexaenoic acid (DHA, C22:6n-3) and eicosapentaenoic acid (EPA, C20:5n-3), the major n-3 polyunsaturated fatty acids (PUFAs) present in fish oil. Additionally, DHA and EPA significantly suppressed COX-2 expression induced by a synthetic lipopeptide, a TLR2 agonist. These results correlated with the preferential suppression of LPS- or lipopeptide-induced NF kappa B activation by DHA and EPA. The target of inhibition by DHA is TLR itself or its associated molecules, but not downstream signaling components. In contrast, COX-2 expression by TLR2 or TRL4 agonist was potentiated by lauric acid, a saturated fatty acid. These results demonstrate that inhibition of COX-2 expression by n-3 PUFAs is mediated through the modulation of TLR-mediated signaling pathways. Thus, the beneficial or detrimental effects of different types of dietary fatty acids on the risk of the development of many chronic inflammatory diseases may be in part mediated through the modulation of TLRs.  相似文献   

7.
In this study the n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid appear to be effective inducers of electrophile-responsive element (EpRE) regulated genes, whereas the n-6 PUFA arachidonic acid is not. These n-3 PUFAs need to be oxidized to induce EpRE-regulated gene expression, as the antioxidant vitamin E can partially inhibit the PUFA induced dose-dependent effect. Results were obtained using a reporter gene assay, real-time RT-PCR and enzyme activity assays. The induction of EpRE-regulated phase II genes by n-3 PUFAs may be a major pathway by which n-3 PUFAs, in contrast to n-6 PUFAs, are chemopreventive and anticarcinogenic.  相似文献   

8.
9.
A voltage-gated, small, persistent Na+ current (INa) has been shown in mammalian cardiomyocytes. Hypoxia potentiates the persistent INa that may cause arrhythmias. In the present study, we investigated the effects of n-3 polyunsaturated fatty acids (PUFAs) on INa in HEK-293t cells transfected with an inactivation-deficient mutant (L409C/A410W) of the -subunit (hH1) of human cardiac Na+ channels (hNav1.5) plus 1-subunits. Extracellular application of 5 µM eicosapentaenoic acid (EPA; C20:5n-3) significantly inhibited INa. The late portion of INa (INa late, measured near the end of each pulse) was almost completely suppressed. INa returned to the pretreated level after washout of EPA. The inhibitory effect of EPA on INa was concentration dependent, with IC50 values of 4.0 ± 0.4 µM for INa peak (INa peak) and 0.9 ± 0.1 µM for INa late. EPA shifted the steady-state inactivation of INa peak by –19 mV in the hyperpolarizing direction. EPA accelerated the process of resting inactivation of the mutant channel and delayed the recovery of the mutated Na+ channel from resting inactivation. Other polyunsaturated fatty acids, docosahexaenoic acid, linolenic acid, arachidonic acid, and linoleic acid, all at 5 µM concentration, also significantly inhibited INa. In contrast, the monounsaturated fatty acid oleic acid or the saturated fatty acids stearic acid and palmitic acid at 5 µM concentration had no effect on INa. Our data demonstrate that the double mutations at the 409 and 410 sites in the D1–S6 region of hH1 induce inactivation-deficient INa and that n-3 PUFAs inhibit mutant INa. human cardiac sodium channel  相似文献   

10.
Tumor necrosis factor (TNF) is a macrophage derived peptide that has an antitumor action and modulates immune and inflammatory reactions. Dietary fatty acids may modulate TNF production as dietary n-3 polyunsaturated fatty acids suppress human monocyte TNF production, but enhance its secretion by murine peritoneal macrophages. Mice were maintained for 5 weeks on diets containing different amounts of n-3 and n-6 fatty acids. TNF, PGE2 and 6-keto PGF1 alpha production was monitored following in vitro stimulation of resident peritoneal macrophages with lipopolysaccharide. Macrophages from mice fed the high n-3 diet produced 8-fold more TNF and half the PGE2 produced by macrophages from mice on the other diets. Indomethacin caused an increase in the TNF production by macrophages from mice on all diets but macrophages from mice on the high n-3 diet produced more TNF than macrophages from mice on the other diets. Exogenous PGE2 (100 nM) greatly decreased TNF production by macrophages from mice on all diets, but macrophages from mice on the high n-3 diet secreted 70% more TNF than macrophages from mice fed the other diets, indicating that PGE2 is only partly responsible for the effects observed. The results show that feeding n-3 polyunsaturated fatty acids may cause enhanced TNF production by resident peritoneal macrophages and that PGE2 is partly responsible for the effect.  相似文献   

11.
The study was carried out on 42 breeder couples (42 males and 42 females) of European brown hare (Lepus europaeus), divided into three groups fed three different experimental diets (14 couples/treatment). Two diets were supplemented with n-3 and n-6 polyunsaturated fatty acids (PUFAs; 2% of linseed oil and soybean oil, respectively) and were compared with a control diet supplemented with a monounsaturated fatty acids (2% of olive oil). During the experimental period (from 15 April to 30 September), the following parameters were recorded: days from the beginning of trial to the first parturition, parturition interval, number of parturitions, number of leverets born (alive and dead), dead during suckling, the total number of leverets weaned and feed intake per cage (of males, females and leverets until weaning). Feed intake was not influenced by treatments. In hares fed n-3 and n-6 diets, the days from the beginning of the trial to the first parturition and the parturition interval were similar and were lower compared with control group (63.1 v. 70.6 days, and 37.8 v. 40.9 days, respectively; P < 0.05). Hares from n-6 group had a higher (P < 0.05) number of parturitions per cage during the experimental period than the n-3 and control group that showed a similar value (3.00 v. 2.36, respectively). The total number of leverets born per cage and parturition in n-6 and n-3 groups increased with respect to those fed control diet (P < 0.05). The leverets' mortality rate at birth was higher in n-6 than in n-3 and control group (3.50 v. 2.17, respectively; P < 0.05). In control group, leverets' mortality rate during suckling was lower with respect to n-3 (P < 0.05) and n-6 (P < 0.05), showing the highest value for the latter (P < 0.05). In spite of this higher mortality, the number of leverets weaned per cage and parturition was higher (P < 0.05) in n-6 compared with n-3 group, being the latter higher than the control group (3.12, 2.79 and 2.43, respectively). Our results show that the dietary PUFAs, particularly n-6 supplementation, have a positive influence on the reproductive performances of the European brown hare.  相似文献   

12.
Studies on the metabolic fate of n-3 polyunsaturated fatty acids   总被引:3,自引:0,他引:3  
Several different processes involved in the metabolic fate of docosahexaenoic acid (DHA, C22:6n-3) and its precursor in the biosynthesis route, C24:6n-3, were studied. In cultured skin fibroblasts, the oxidation rate of [1-14C] 24:6n-3 was 2.7 times higher than for [1-14C]22:6n-3, whereas [1-14C]22:6n-3 was incorporated 7 times faster into different lipid classes than was [1-14C]24:6n-3. When determining the peroxisomal acyl-CoA oxidase activity, similar specific activities for C22:6(n-3)-CoA and C24:6(n-3)-CoA were found in mouse kidney peroxisomes. Thioesterase activity was measured for both substrates in mouse kidney peroxisomes as well as mitochondria, and C22:6(n-3)-CoA was hydrolyzed 1.7 times faster than C24:6(n-3)-CoA. These results imply that the preferred metabolic fate of C24:6(n-3)-CoA, after its synthesis in the endoplasmic reticulum (ER), is to move to the peroxisome, where it is beta-oxidized, producing C22:6(n-3)-CoA. This DHA-CoA then preferentially moves back, probably as free fatty acid, to the ER, where it is incorporated into membrane lipids.  相似文献   

13.
The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.  相似文献   

14.
《Cell metabolism》2021,33(8):1701-1715.e5
  1. Download : Download high-res image (160KB)
  2. Download : Download full-size image
  相似文献   

15.
Brown/beige fat plays a crucial role in maintaining energy homeostasis through non-shivering thermogenesis in response to cold temperature and excess nutrition (adaptive thermogenesis). Although numerous molecular and genetic regulators have been identified, relatively little information is available regarding thermogenic dietary molecules. Recently, a growing body of evidence suggests that high consumption of n-3 polyunsaturated fatty acids (PUFA) or activation of GPR120, a membrane receptor of n-3 PUFA, stimulate adaptive thermogenesis. In this review, we summarize the emerging evidence that n-3 PUFA promote brown/beige fat formation and highlight the potential mechanisms whereby n-3 PUFA require GPR120 as a signaling platform or act independently. Human clinical trials are revisited in the context of energy expenditure. Additionally, we explore some future perspective that n-3 PUFA intake might be a useful strategy to boost or sustain metabolic activities of brown/beige fat at different lifecycle stages of pregnancy and senescence. Given that a high ratio of n-6/n-3 PUFA intake is associated with the development of obesity and type 2 diabetes, understanding the impact of n-6/n-3 ratio on energy expenditure and adaptive thermogenesis will inform the implementation of a novel nutritional strategy for preventing obesity.  相似文献   

16.
Epidemiological evidence from Greenland Eskimos and Japanese fishing villages suggests that eating fish oil and marine animals can prevent coronary heart disease. Dietary studies from various laboratories have similarly indicated that regular fish oil intake affects several humoral and cellular factors involved in atherogenesis and may prevent atherosclerosis, arrhythmia, thrombosis, cardiac hypertrophy and sudden cardiac death. The beneficial effects of fish oil are attributed to their n-3 polyunsaturated fatty acid (PUFA; also known as omega-3 fatty acids) content, particularly eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3). Dietary supplementation of DHA and EPA influences the fatty acid composition of plasma phospholipids that, in turn, may affect cardiac cell functions in vivo. Recent studies have demonstrated that long-chain omega-3 fatty acids may exert beneficial effects by affecting a wide variety of cellular signaling mechanisms. Pathways involved in calcium homeostasis in the heart may be of particular importance. L-type calcium channels, the Na+-Ca2+ exchanger and mobilization of calcium from intracellular stores are the most obvious key signaling pathways affecting the cardiovascular system; however, recent studies now suggest that other signaling pathways involving activation of phospholipases, synthesis of eicosanoids, regulation of receptor-associated enzymes and protein kinases also play very important roles in mediating n-3 PUFA effects on cardiovascular health. This review is therefore focused on the molecular targets and signaling pathways that are regulated by n-3 PUFAs in relation to their cardioprotective effects.  相似文献   

17.
Regulation of polyunsaturated fatty acid (PUFA) biosynthesis in proliferating and NGF-differentiated PC12 pheochromocytoma cells deficient in n-3 docosahexaenoic acid (DHA 22:6n-3) was studied. A dose- and time-dependent increase in eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3) and DHA in phosphatidylethanolamine (PtdEtn) and phosphatidylserine (PtdSer) glycerophospholipids (GPL) via the elongation/desaturation pathway following alpha-linolenic acid (ALA, 18:3n-3) supplements was observed. That was accompanied by a marked reduction of eicosatrienoic acid (Mead acid 20:3n-9), an index of PUFA deficiency. EPA supplements were equally effective converted to 22:5n-3 and 22:6n-3. On the other hand, supplements of linoleic acid (LNA, 18:2n-6) were not effectively converted into higher n-6 PUFA intermediates nor did they impair elongation/desaturation of ALA. Co-supplements of DHA along with ALA did not interfere with 20:5n-3 biosynthesis but reduced further elongation to 22-hydrocarbon PUFA intermediates. A marked decrease in the newly synthesized 22:5n-3 and 22:6n-3 following ALA or EPA supplements was observed after nerve growth factor (NGF)-induced differentiation. NGF also inhibited the last step in 22:5n-6 formation from LNA. These results emphasize the importance of overcoming n-3 PUFA deficiency and raise the possibility that growth factor regulation of the last step in PUFA biosynthesis may constitute an important feature of neuronal phenotype acquisition.  相似文献   

18.
Ras proteins are critical regulators of cell function, including growth, differentiation, and apoptosis, with membrane localization of the protein being a prerequisite for malignant transformation. We have recently demonstrated that feeding fish oil, compared with corn oil, decreases colonic Ras membrane localization and reduces tumor formation in rats injected with a colon carcinogen. Because the biological activity of Ras is regulated by posttranslational lipid attachment and its interaction with stimulatory lipids, we investigated whether docosahexaenoic acid (DHA), found in fish oil, compared with linoleic acid (LA), found in corn oil, alters Ras posttranslational processing, activation, and effector protein function in young adult mouse colon cells overexpressing H-ras (YAMC-ras). We show here that the major n-3 polyunsaturated fatty acid (PUFA) constituent of fish oil, DHA, compared with LA (an n-6 PUFA), reduces Ras localization to the plasma membrane without affecting posttranslational lipidation and lowers GTP binding and downstream p42/44(ERK)-dependent signaling. In view of the central role of oncogenic Ras in the development of colon cancer, the finding that n-3 and n-6 PUFA differentially modulate Ras activation may partly explain why dietary fish oil protects against colon cancer development.  相似文献   

19.
Synthesis of n-3 and n-6 very long chain-PUFAs (VLC-PUFAs) from 18-carbon essential fatty acids is differentially regulated. The predominant product arising from n-3 fatty acids is docosahexaenoic acid (22:6n-3), with the liver serving as the main site of production. The synthetic pathway requires movement of a 24-carbon intermediate from the endoplasmic reticulum to peroxisomes for retroconversion to 22:6n-3. The mechanism of this intra-organelle flux is unknown, but could be binding-protein facilitated. We thus investigated binding of a series of previously untested VLC-PUFAs to liver fatty acid-binding protein (L-FABP). Three fluorometric assays were employed, all of which showed strong binding (K(d)' approximately 10(-8) to 10(-7) M) of 20-, 22-, and 24-carbon n-3 PUFAs to L-FABP. In contrast, synthesis of the predominant n-6 PUFA product, arachidonic acid, does not require intra-organelle transport. However, we found that n-6 VLC-PUFAs bound to L-FABP with affinities (K(d)' approximately 10(-8) to 10(-7) M) comparable to their n-3 counterparts.Although these results raise the possibility that L-FABP may participate in the cytoplasmic processing of n-3 and n-6 VLC-PUFAs, there is no evidence on the basis of binding affinities that L-FABP accounts for differences in the predominant products formed by the n-3 and n-6 PUFA metabolic pathways.  相似文献   

20.
Dietary-treated phenylketonuric patients (PKUs) display low levels of long-chain polyunsaturated fatty acids (PUFA) in plasma lipids. In a 6-month clinical trial we observed a decrease of triglycerides and an increase of n-3 long-chain PUFA in plasma of PKUs supplemented with fish oil, while no major differences in respect to the baseline values were found in a group supplemented with blackcurrant oil. A more complete source of long-chain PUFA of both the n-6 and n-3 series should be investigated for dietary supplementation of PKU patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号