共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein–protein interactions (PPI) are involved in all cellular processes and many represent attractive therapeutic targets. However, the frequently rather flat and large interaction areas render the identification of small molecular PPI inhibitors very challenging. As an alternative, peptide interaction motifs derived from a PPI interface can serve as starting points for the development of inhibitors. However, certain proteins remain challenging targets when applying inhibitors with a competitive mode of action. For that reason, peptide-based ligands with an irreversible binding mode have gained attention in recent years. This review summarizes examples of covalent inhibitors that employ peptidic binders and have been tested in a biological context. 相似文献
3.
4.
5.
6.
7.
8.
Small molecule metabolites play important roles in regulating protein functions, which are acted through either covalent non-enzymatic post-translational modifications or non-covalent binding interactions. Chemical proteomic strategies can help delineate global landscapes of cellular protein–metabolite interactions and provide molecular insights about their mechanisms of action. In this review, we summarized the recent progress in developments and applications of chemoproteomic strategies to profile protein–metabolite interactions. 相似文献
9.
《生物化学与生物物理学报:生物膜》2015,1848(9):1849-1859
We review the importance of helix motions for the function of several important categories of membrane proteins and for the properties of several model molecular systems. For voltage-gated potassium or sodium channels, sliding, tilting and/or rotational movements of the S4 helix accompanied by a swapping of cognate side-chain ion-pair interactions regulate the channel gating. In the seven-helix G protein-coupled receptors, exemplified by the rhodopsins, collective helix motions serve to activate the functional signaling. Peptides which initially associate with lipid-bilayer membrane surfaces may undergo dynamic transitions from surface-bound to tilted-transmembrane orientations, sometimes accompanied by changes in the molecularity, formation of a pore or, more generally, the activation of biological function. For single-span membrane proteins, such as the tyrosine kinases, an interplay between juxtamembrane and transmembrane domains is likely to be crucial for the regulation of dimer assembly that in turn is associated with the functional responses to external signals. Additionally, we note that experiments with designed single-span transmembrane helices offer fundamental insights into the molecular features that govern protein–lipid interactions.This article is part of a Special Issue entitled: Lipid–protein interactions. 相似文献
10.
11.
Sandeep Yadav Jun Liu Thomas M. Scherer Yatin Gokarn Barthélemy Demeule Sonoko Kanai James D. Andya Steven J. Shire 《Biophysical reviews》2013,5(2):121-136
Early development of protein biotherapeutics using recombinant DNA technology involved progress in the areas of cloning, screening, expression and recovery/purification. As the biotechnology industry matured, resulting in marketed products, a greater emphasis was placed on development of formulations and delivery systems requiring a better understanding of the chemical and physical properties of newly developed protein drugs. Biophysical techniques such as analytical ultracentrifugation, dynamic and static light scattering, and circular dichroism were used to study protein–protein interactions during various stages of development of protein therapeutics. These studies included investigation of protein self-association in many of the early development projects including analysis of highly glycosylated proteins expressed in mammalian CHO cell cultures. Assessment of protein–protein interactions during development of an IgG1 monoclonal antibody that binds to IgE were important in understanding the pharmacokinetics and dosing for this important biotherapeutic used to treat severe allergic IgE-mediated asthma. These studies were extended to the investigation of monoclonal antibody–antigen interactions in human serum using the fluorescent detection system of the analytical ultracentrifuge. Analysis by sedimentation velocity analytical ultracentrifugation was also used to investigate competitive binding to monoclonal antibody targets. Recent development of high concentration protein formulations for subcutaneous administration of therapeutics posed challenges, which resulted in the use of dynamic and static light scattering, and preparative analytical ultracentrifugation to understand the self-association and rheological properties of concentrated monoclonal antibody solutions. 相似文献
12.
13.
14.
15.
16.
Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function. 相似文献
17.
Sumonja Neven Gemovic Branislava Veljkovic Nevena Perovic Vladimir 《Amino acids》2019,51(8):1187-1200
Amino Acids - Over the last decade, various machine learning (ML) and statistical approaches for protein–protein interaction (PPI) predictions have been developed to help annotating... 相似文献
18.
19.
Targeting of extracellular protein–protein interactions (PPI) is emerging as a major application for de novo discovered macrocyclic peptides. Modern discovery platforms can routinely identify macrocyclic peptide ligands capable of highly selective modulation of extracellular signaling pathways; amenability to chemical synthesis and natural modularity of peptides additionally provides an avenue for their further structural elaboration, while the challenge of cell internalization can be minimized. Here, we discuss the recent progress in targeting extracellular PPIs with macrocyclic peptides by focusing on a number of recent case studies. We analyze the scope and potential limitations of the discovery systems in identifying functional macrocyclic ligands. We also highlight the recent technical advancements allowing for a more streamlined discovery pipeline and our brief perspective in this field. 相似文献