首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetes is associated with cognitive impairment and brain aging, with alterations in hippocampal neurogenesis and synaptic plasticity implicated in these changes. As the prevalence of diabetes continues to rise, readily implemented strategies are increasingly needed in order to protect the brain’s cognitive functions. One possibility is resveratrol (RES) (3,5,4- trihydroxystilbene), a polyphenol of the phytoalexin family that has been shown to be protective in a number of neuropathology paradigms. In the present study, we sought to determine whether dietary supplementation with RES has potential for the protection of cognitive functions in diabetes. Diabetes was induced using streptozotocin, and once stable, animals received AIN93G rodent diet supplemented with RES for 6 weeks. Genome-wide expression analysis was conducted on the hippocampus and genes of interest were confirmed by quantitative, real-time polymerase chain reaction. Genome-wide gene expression analysis of the hippocampus revealed that RES supplementation of the diabetic group resulted in 481differentially expressed genes compared to non-supplemented diabetic mice. Intriguingly, gene expression that was previously found significantly altered in the hippocampus of diabetic mice, and that is implicated in neurogenesis and synaptic plasticity (Hdac4, Hat1, Wnt7a, ApoE), was normalized following RES supplementation. In addition, pathway analysis revealed Jak-Stat signaling was the most significantly enriched pathway. The Jak-Stat pathway induces a pro-inflammatory signaling cascade, and we found most genes involved in this cascade (e.g. Il15, Il22, Socs2, Socs5) had significantly lower expression following RES supplementation. These data indicate RES could be neuroprotective and beneficial for the maintenance of cognitive function in diabetes.  相似文献   

2.
BackgroundDietary supplementation with omega-3 fatty acids has been associated with reduced incidence in thrombotic events. In addition, administration of n-3 polyunsaturated fatty acids (PUFAs) has been shown to rectify elevated platelet microparticle (MP) number and procoagulant activity in post myocardial infarction patients. However, it is unknown whether supplementation can alter these parameters in healthy individuals and if such effects are immediate or require long-term supplementation. We have previously demonstrated a gender-specific effect of LCn-3PUFA supplementation on platelet aggregation in healthy human subjects. Here we extend these findings to include the acute effects of supplementation with EPA- or DHA-rich oils on circulating MP levels and activity in healthy subjects.DesignA placebo-controlled trial was conducted in healthy males and females (n=30). MP activity, MP levels and platelet aggregation were measured at 0 and 24 h postsupplementation with either a placebo or EPA- or DHA-rich oil.ResultsBoth EPA and DHA effectively reduced platelet aggregation at 24 h postsupplementation relative to placebo (?13.3%, P=.006 and ?11.9%, P=.016, respectively), but only EPA reduced MP activity (?19.4%, P=.003). When grouped by gender, males showed a similar reduction in both platelet aggregation and MP activity (?20.5%, P=.008; ?22%, P=.008) following EPA, while females showed significantly reduced platelet aggregation (?13.7%, P=.04) but not MP activity after DHA only.ConclusionEPA and DHA exert gender-dependent effects on platelet aggregation and platelet MP activity, but not on MP levels. With respect to thrombotic disease risk, males may benefit more from EPA supplementation.  相似文献   

3.
4.
Chronic low-grade inflammation in type 2 diabetes mellitus (DM) can elicit changes in whole-body zinc metabolism. The interaction among the expression of inflammatory cytokines, zinc transporter and metallothionein (MT) genes in peripheral blood mononuclear cells in type 2 DM remains unclear. In a 12-week randomized controlled trial, the effects of zinc (40 mg/day) supplementation on the gene expression of cytokines, zinc transporters and MT in women with type 2 DM were examined. In the zinc-supplemented group, gene expression of tumour necrosis factor (TNF)-α tended to be upregulated by 27 ± 10 % at week 12 compared to baseline (P = 0.053). TNF-α fold change in the zinc-treated group was higher than in those without zinc supplementation (P < 0.05). No significant changes were observed in the expression or fold change of interleukin (IL)- or IL-6. Numerous bivariate relationships were observed between the fold changes of cytokines and zinc transporters, including ZnT7 with IL- (P < 0.01), IL-6 (P < 0.01) and TNF-α (P < 0.01). In multiple regression analysis, IL- expression was predicted by the expression of all zinc transporters and MT measured at baseline (r 2 = 0.495, P < 0.05) and at week 12 (r 2 = 0.532, P < 0.03). The current study presents preliminary evidence that zinc supplementation increases cytokine gene expression in type 2 DM. The relationships found among zinc transporters, MT and cytokines suggest close  interactions between zinc homeostasis and inflammation.  相似文献   

5.
The development of fetal brain is influenced by nutrients such as docosahexaenoic acid (DHA, 22:6) and choline. Phosphatidylethanolamine-N-methyltransferase (PEMT) catalyzes the biosynthesis of phosphatidylcholine from phosphatidylethanolamine enriched in DHA and many humans have functional genetic polymorphisms in the PEMT gene. Previously, it was reported that Pemt−/− mice have altered hippocampal development. The present study explores whether abnormal phosphatidylcholine biosynthesis causes altered incorporation of DHA into membranes, thereby influencing brain development, and determines whether supplemental dietary DHA can reverse some of these changes. Pregnant C57BL/6 wild type (WT) and Pemt−/− mice were fed a control diet, or a diet supplemented with 3 g/kg of DHA, from gestational day 11 to 17. Brains from embryonic day 17 fetuses derived from Pemt−/− dams fed the control diet had 25–50% less phospholipid-DHA as compared with WT (p < 0.05). Also, they had 60% more neural progenitor cell proliferation (p < 0.05), 60% more neuronal apoptosis (p < 0.01), and 30% less calretinin expression (p < 0.05; a marker of neuronal differentiation) in the hippocampus compared with WT. The DHA-supplemented diet increased fetal brain Pemt−/− phospholipid-DHA to WT levels, and abrogated the neural progenitor cell proliferation and apoptosis differences. Although this diet did not change proliferation in the WT group, it halved the rate of apoptosis (p < 0.05). In both genotypes, the DHA-supplemented diet increased calretinin expression 2-fold (p < 0.05). These results suggest that the changes in hippocampal development in the Pemt−/− mouse could be mediated by altered DHA incorporation into membrane phospholipids, and that maternal dietary DHA can influence fetal brain development.  相似文献   

6.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by extracellular deposits of fibrillar aggregates of amyloid-β peptide (Aβ). Levels of docosahexaenoic acid (DHA, 22:6n-3), the major fatty acid component of the neuronal membrane, are reduced in the AD hippocampus. We hypothesized that hippocampal neurons with reduced DHA levels would be more susceptible to aggregated Aβ-induced death and that this might be overcome by increasing hippocampal neuronal DHA levels. Embryonic Day 18 rat hippocampal cells were cultured in neurobasal medium with B27 supplemented with 0–100 μM DHA for 8 days, then were treated with 5 μM aggregated Aβ42 for 1 day. We found that supplementation with 5–10 μM DHA, which resulted in hippocampal neuron DHA levels of 12–16% of total fatty acids, was optimal for primary hippocampal neuronal survival, whereas supplementation with 5 or 25 μM DHA attenuated aggregated Aβ42-induced neurotoxicity and protected hippocampal neurons, with 25 μM DHA being more effective. DHA supplementation also resulted in significant up-regulation of expression of tyrosine tubulin and acetylated tubulin. We suggest that hippocampal neuronal DHA levels may be critical for AD prevention by attenuating the neurotoxicity induced by Aβ and in maintaining hippocampal neuron survival.  相似文献   

7.
8.
The Wnt genes encode a large family of secreted glycoproteins that play important roles in controlling tissue patterning, cell fate and proliferation during development. Currently, little is known regarding the role(s) of Wnt genes during prostate gland development. The present study examines the role of the noncanonical Wnt5a during prostate gland development in rat and murine models. In the rat prostate, Wnt5a mRNA is expressed by distal mesenchyme during the budding stage and localizes to periductal mesenchymal cells with an increasing proximal-to-distal gradient during branching morphogenesis. Wnt5a protein is secreted and localizes to periductal stroma, extracellular matrix and epithelial cells in the distal ducts. While Wnt5a expression is high during active morphogenesis in all prostate lobes, ventral prostate (VP) expression declines rapidly following morphogenesis while dorsal (DP) and lateral lobe (LP) expression remains high into adulthood. Steroids modulate prostatic Wnt5a expression during early development with testosterone suppressing Wnt5a and neonatal estrogen increasing expression. In vivo and ex vivo analyses of developing mouse and rat prostates were used to assess the functional roles of Wnt5a. Wnt5a−/− murine prostates rescued by organ culture exhibit disturbances in bud position and directed outgrowth leading to large bulbous sacs in place of elongating ducts. In contrast, epithelial cell proliferation, ductal elongation and branchpoint formation are suppressed in newborn rat prostates cultured with exogenous Wnt5a protein. While renal grafts of Wnt5a−/− murine prostates revealed that Wnt5a is not essential for cyto- and functional differentiation, a role in luminal cell polarity and lumenization of the ducts was indicated. Wnt5a suppresses prostatic Shh expression while Shh stimulates Wnt5a expression in a lobe-specific manner during early development indicating that Wnt5a participates in cross-talk with other members of the gene regulatory network that control prostate development. Although Wnt5a does not influence prostatic expression of other Wnt morphogens, it suppresses Wif-1 expression and can thus indirectly modulate Wnt signaling. In summary, the present finds demonstrate that Wnt5a is essential for normal prostate development where it regulates bud outgrowth, ductal elongation, branching, cell polarity and lumenization. These findings contribute to the growing body of knowledge on regulatory mechanisms involved in prostate gland development which are key to understanding abnormal growth processes associated with aging.  相似文献   

9.
A diet rich in omega-3s has previously been suggested to prevent bone loss. However, evidence for this has been limited by short exposure to omega-3 fatty acids (FAs). We investigated whether a diet enriched in eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for the entire adult life of mice could improve bone microstructure and strength. Thirty female mice received a diet enriched in DHA or EPA or an isocaloric control diet from 3 to 17 months of age. Changes in bone microstructure were analyzed longitudinally and biomechanical properties were analysed by a three-point bending test. Bone remodelling was evaluated by markers of bone turnover and histomorphometry. Trabecular bone volume in caudal vertebrae was improved by EPA or DHA at 8 months (+26.6% and +17.2%, respectively, compared to +3.8% in controls, P=.01), but not thereafter. Trabecular bone loss in the tibia was not prevented by omega-3 FAs (BV/TV −94%, −93% and −97% in EPA, DHA and controls, respectively). EPA improved femur cortical bone volume (+8.1%, P<.05) and thickness (+4.4%, P<.05) compared to controls. EPA, but not DHA, reduced age-related decline of osteocalcin (−70% vs. −83% in controls, P<.05). EPA and DHA increased leptin levels (7.3±0.7 and 8.5±0.5 ng ml−1, respectively, compared to 4.5±0.9 ng ml−1 in controls, P=.001); however, only EPA further increased IGF-1 levels (739±108 ng ml−1, compared to 417±58 ng ml−1 in controls, P=.04). These data suggest that long-term intake of omega-3 FA, particularly EPA, may modestly improve the structural and mechanical properties of cortical bone by an increase in leptin and IGF-1 levels, without affecting trabecular bone loss.  相似文献   

10.
The pathology of type 2 diabetes mellitus (DM) often is associated with underlying states of conditioned zinc deficiency and chronic inflammation. Zinc and omega-3 polyunsaturated fatty acids each exhibit anti-inflammatory effects and may be of therapeutic benefit in the disease. The present randomized, double-blind, placebo-controlled, 12-week trial was designed to investigate the effects of zinc (40 mg/day) and α-linolenic acid (ALA; 2 g/day flaxseed oil) supplementation on markers of inflammation [interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, C-reactive protein (CRP)] and zinc transporter and metallothionein gene expression in 48 postmenopausal women with type 2 DM. No significant effects of zinc or ALA supplementation were observed on inflammatory marker concentrations or fold change in zinc transporter and metallothionein gene expression. Significant increases in plasma zinc concentrations were observed over time in the groups supplemented with zinc alone or combined with ALA (P=.007 and P=.009, respectively). An impact of zinc treatment on zinc transporter gene expression was found; ZnT5 was positively correlated with Zip3 mRNA (P<.001) only in participants receiving zinc, while zinc supplementation abolished the relationship between ZnT5 and Zip10. IL-6 predicted the expression levels and CRP predicted the fold change of the ZnT5, ZnT7, Zip1, Zip7 and Zip10 mRNA cluster (P<.001 and P=.031, respectively). Fold change in the expression of metallothionein mRNA was predicted by TNF-α (P=.022). Associations among inflammatory cytokines and zinc transporter and metallothionein gene expression support an interrelationship between zinc homeostasis and inflammation in type 2 DM.  相似文献   

11.
Adoption of an obesogenic diet low in calcium and vitamin D (CaD) leads to increased obesity, colonic inflammation, and cancer. However, the underlying mechanisms remain to be elucidated. We tested the hypothesis that CaD supplementation (from inadequacy to adequacy) may reduce colonic inflammation, oncogenic signaling, and dysbiosis in the colon of C57BL/6 mice fed a Western diet. Male C57/BL6 mice (4-weeks old) were assigned to 3 dietary groups for 36 weeks: (1) AIN76A as a control diet (AIN); (2) a defined rodent “new Western diet” (NWD); or (3) NWD with CaD supplementation (NWD/CaD). Compared to the AIN, mice receiving the NWD or NWD/CaD exhibited more than 0.2-fold increase in the levels of plasma leptin, tumor necrosis factor α (TNF-α) and body weight. The levels of plasma interleukin 6 (IL-6), inflammatory cell infiltration, and β-catenin/Ki67 protein (oncogenic signaling) were increased more than 0.8-fold in the NWD (but not NWD/CaD) group compared to the AIN group. Consistent with the inflammatory phenotype, colonic secondary bile acid (inflammatory bacterial metabolite) levels increased more than 0.4-fold in the NWD group compared to the NWD/CaD and AIN groups. Furthermore, the abundance of colonic Proteobacteria (e.g., Parasutterela), considered signatures of dysbiosis, was increased more than four-fold; and the α diversity of colonic bacterial species, indicative of health, was decreased by 30% in the NWD group compared to the AIN and NWD/CaD groups. Collectively, CaD adequacy reduces colonic inflammation, β-catenin oncogenic signaling, secondary bile acids, and bacterial dysbiosis in mice fed with a Western diet.  相似文献   

12.
Apolipoprotein ε allele 4 (APOE4) influences the metabolism of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA). The entorhinal cortex (EC) in the brain is affected early in Alzheimer's disease and is rich in DHA. The purpose of this study is to identify the effect of APOE4 and DHA lipid species on the EC. Plasma and cerebrospinal fluid (CSF) lipidomic measurements were obtained from the DHA Brain Delivery Pilot, a randomized clinical trial of DHA supplementation (n = 10) versus placebo (n = 12) for six months in nondemented older adults stratified by APOE4 status. Wild-type C57B6/J mice were fed a high or low DHA diet for 6 months followed by plasma and brain lipidomic analysis. Levels of phosphatidylcholine DHA (PC 38:6) and cholesterol ester DHA (CE 22:6) had the largest increases in CSF following supplementation (P < 0.001). DHA within triglyceride (TG) lipids in CSF strongly correlated with corresponding plasma TG lipids, and differed by APOE4, with carriers having a lower increase than noncarriers. Changes in plasma PC DHA had the strongest association with changes in EC thickness in millimeters, independent of APOE4 status (P = 0.007). In mice, a high DHA diet increased PUFAs within brain lipids. Our findings demonstrate an exchange of DHA at the CSF-blood barrier and into the brain within all lipid species with APOE having the strongest effect on DHA-containing TGs. The correlation of PC DHA with EC suggests a functional consequence of DHA accretion in high density lipoprotein for the brain.  相似文献   

13.
Pork and pork products are recognised as vehicles of SalmonellaTyphimurium infection in humans. Seaweed-derived polysaccharides (SWE) and galacto-oligosaccharides (GOS) have shown to exhibit antimicrobial, prebiotic and immunomodulatory activity. The objective of this study was to assess the effects of dietary GOS and SWE supplementation on reducing S.Typhimurium numbers and intestinal inflammation in vivo. In total, 30 pigs (n=10/treatment, BW 30.9 kg) were randomly assigned to three dietary treatments: (1) basal diet; (2) basal diet+2.5 g GOS/kg diet; (3) basal diet+SWE (containing 180 mg laminarin/kg diet+340 mg fucoidan/kg diet). Following an 11-day dietary adaptation period, pigs were orally challenged with 108colony-forming units/ml S.Typhimurium (day 0). Pigs remained on their diets for a further 17 days and were then sacrificed for sample collection. The SWE supplementation did not affect S.Typhimurium numbers on days 2 and 4 post-challenge but reduced S.Typhimurium numbers in faecal samples collected day 7 post-challenge (−0.80 log gene copy numbers (GCN)/g faeces) and in caecal and colonic digesta (−0.62 and −0.98 log GCN/g digesta, respectively; P<0.05) compared with the control treatment. Lactobacillusnumbers were increased in caecal and colonic digesta after GOS supplementation (+0.70 and +0.35 log GCN/g digesta, respectively; P<0.05). In colonic tissue, both GOS and SWE supplementation resulted in reduced messenger RNA expression levels of interleukin(IL)-6, IL-22, tumour necrosis factor-αand regenerating islet-derived protein 3-γ(P<0.05). It can be concluded that dietary supplementation of SWE reduced faecal and intestinal S.Typhimurium numbers compared with the basal diet, whereas dietary GOS supplementation increased Lactobacillusnumbers in caecal and colonic digesta but did not affect S.Typhimurium numbers. Supplementation of GOS and SWE reduced the gene expression of pro-inflammatory cytokines in colonic tissue of pigs after the experimental S. Typhimurium challenge.  相似文献   

14.
15.
This study aimed to investigate the effects and possible interactions of birth weight and n-3 polyunsaturated fatty acid (PUFA) supplementation of the maternal diet on the fatty acid status of different tissues of newborn piglets. These effects are of interest as both parameters have been associated with pre-weaning mortality. Sows were fed a palm oil diet or a diet containing 1% linseed, echium or fish oil from day 73 of gestation. As fish oil becomes a scarce resource, linseed and echium oil were supplemented as sustainable alternatives, adding precursor fatty acids for DHA to the diet. At birth, the lightest and heaviest male piglet per litter were killed and samples from liver, brain and muscle were taken for fatty acid analysis. Piglets that died pre-weaning had lower birth weights than piglets surviving lactation (1.27±0.04 v. 1.55±0.02 kg; P<0.001), but no effect of diet on mortality was found. Lower DHA concentrations were observed in the brain of the lighter piglets compared with their heavier littermates (9.46±0.05 v. 9.63±0.04 g DHA/100 g fatty acids; P=0.008), suggesting that the higher incidence of pre-weaning mortality in low birth weight piglets may be related to their lower brain DHA status. Adding n-3 PUFA to the sow diet could not significantly reduce this difference in DHA status, although numerically the difference in the brain DHA concentration between the piglet weight groups was smaller when fish oil was included in the sow diet. Independent of birth weight, echium or linseed oil in the sow diet increased the DHA concentration of the piglet tissues to the same extent, but the concentrations were not as high as when fish oil was fed.  相似文献   

16.
We investigated the impact of vitamin D deficiency and repletion on muscle anabolism in old rats. Animals were fed a control (1 IU vitamin D3/g, ctrl, n=20) or a vitamin D-depleted diet (VDD; 0 IU, n=30) for 6 months. A subset was thereafter sacrificed in the control (ctrl6) and depleted groups (VDD6). Remaining control animals were kept for 3 additional months on the same diet (ctrl9), while a part of VDD rats continued on a depleted diet (VDD9) and another part was supplemented with vitamin D (5 IU, VDS9). The ctr16 and VDD6 rats and the ctr19, VDD9 and VDS9 rats were 21 and 24 months old, respectively. Vitamin D status, body weight and composition, muscle strength, weight and lipid content were evaluated. Muscle protein synthesis rate (fractional synthesis rate; FSR) and the activation of controlling pathways were measured. VDD reduced plasma 25(OH)-vitamin D, reaching deficiency (<25 nM), while 25(OH)-vitamin D increased to 118 nM in the VDS group (P<.0001). VDD animals gained weight (P<.05) with no corresponding changes in lean mass or muscle strength. Weight gain was associated with an increase in fat mass (+63%, P<.05), intramyocellular lipids (+75%, P<.05) and a trend toward a decreased plantaris weight (−19%, P=.12). Muscle FSR decreased by 40% in the VDD group (P<.001), but was restored by vitamin D supplementation (+70%, P<.0001). Such changes were linked to an over-phosphorylation of eIF2α. In conclusion, vitamin D deficiency in old rats increases adiposity and leads to reduced muscle protein synthesis through activation of eIF2α. These disorders are restored by vitamin D supplementation.  相似文献   

17.
Polyunsaturated fatty acids (PUFA) contained in fish oil (FO) are ligands for peroxisome proliferator-activated receptors (PPAR) that may induce changes in cardiometabolic markers. Variation in PPAR genes may influence the beneficial responses linked to FO supplementation in young adults. The study aimed to analyze the effect of FO supplementation on glucose metabolism, circulating lipids and inflammation according to PPARα L162V and PPARγ2 P12A genotypes in young Mexican adults. 191 young, non-smoking subjects between 18 and 40 years were included in a one-arm study. Participants were supplemented with 2.7 g/day of EPA + DHA, during six weeks. Dietary analysis, body composition measurements and indicators for glucose metabolism, circulating lipids, and markers for inflammation were analyzed before and after intervention. An overall decrease in triglycerides (TG) and an increase in HS-ω3 index were observed in all subjects [−4.1 mg/dL, (SD:±51.7), P=.02 and 2.6%, (SD:±1.2), P<.001 respectively]. Mean fasting insulin and glycated hemoglobin (HbA1c%) were significantly decreased in all subjects [−0.547mlU/L, (SD:±10.29), P=.034 and−0.07%, (SD:±0.3), P<.001 respectively], whereas there was no change in body composition, fasting glucose, adiponectin and inflammatory markers. Subjects carrying the minor alleles of PPARα L162V and PPARγ2 P12A had higher responses in reduction of TG and fasting insulin respectively. Interestingly, doses below 2.7 g/day (1.8 g/day) were sufficient to induce a significant reduction in fasting insulin and HbA1c% from baseline (P=.019 and P<.001). The observed responses in triglycerides and fasting insulin in the Mexican population give further evidence of the importance of FO supplementation in young people as an early step towards the prevention of cardiometabolic disease.  相似文献   

18.
19.
trans-Resveratrol (3,4′,5-trihydroxystilbene; RES) is of interest for its reported protective effects in a variety of pathologies, including neurodegeneration. Many of these protective properties have been attributed to the ability of RES to reduce oxidative stress. In vitro studies have shown an increase in antioxidant enzyme activities following exposure to RES, including upregulation of mitochondrial superoxide dismutase, an enzyme that is capable of reducing both oxidative stress and cell death. We sought to determine if a similar increase in endogenous antioxidant enzymes is observed with RES treatment in vivo. Three separate modes of RES delivery were utilized; in a standard diet, a high fat diet and through a subcutaneous osmotic minipump. RES given in a high fat diet proved to be effective in elevating antioxidant capacity in brain resulting in an increase in both MnSOD protein level (140%) and activity (75%). The increase in MnSOD was not due to a substantial proliferation of mitochondria, as RES treatment induced a 10% increase in mitochondrial abundance (Citrate Synthase activity). The potential neuroprotective properties of MnSOD have been well established, and we demonstrate that a dietary delivery of RES is able to increase the expression and activity of this enzyme in vivo.  相似文献   

20.
Soil is the main matrix which contributes to the transfer of environmental pollutants to animals and consequently into the food chain. In the French West Indies, chlordecone, a very persistent organochlorine pesticide, has been widely used on banana growing areas and this process has resulted in a long-term pollution of the corresponding soils. Domestic outside-reared herbivores are exposed to involuntary soil intake, and tethered grazing commonly used in West Indian systems can potentially favour their exposure to chlordecone. Thus, it appears necessary to quantify to what extent grazing conditions will influence soil intake. This experiment consisted of a cross-over design with two daily herbage allowance (DHA) grazed alternatively. Six young Creole bulls were distributed into two groups (G1 and G2) according to their BW. The animals were individually tethered and grazed on a restrictive (RES) or non-restrictive (NRES) levels of DHA during two successive 10-days periods. Each bull progressed on a new circular area every day. The two contrasting levels of DHA (P<0.001) were obtained via a different daily grazing surface area (RES: 20 m2/animal, NRES: 31 m2/animal; P<0.01) offered to the animals by the modulation of the length of the tethering chain (RES: 1.9 m, NRES: 2.6 m). These differences in offered grazing areas resulted in DHA of 71 and 128 g DM/kg BW0.75, respectively for RES and NRES treatments. As expected, the animals grazing on the reduced area realized a lower daily dry matter intake (DMI) (RES: 1.12 kg/100 kg BW, NRES: 1.83 kg/100 kg BW; P<0.05) and present a lower organic matter digestibility (RES: 0.67, NRES: 0.73; P<0.01) than NRES ones, due in part to the shorter post-grazing sward surface height (RES: 3.3 cm, NRES: 5.2 cm; P<0.01) of their grazing circles. Soil intake was estimated on an individual level based on the ratio of the marker titanium in soil, herbage and faeces. Grazing closer to the ground, animals on RES treatment ingested a significantly higher proportion of soil in their total DMI (RES: 9.3%, NRES: 4.4%; P<0.01). The amount of ingested soil in the diet was not significantly different between the two treatments (RES: 98 g/100 kg BW, NRES: 78 g/100 kg BW; P>0.05) due to the lower DMI of RES compared with NRES treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号