首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Early-life nutrition plays an important role in regulating adult metabolism. This study evaluated the effects of early nutrition during the suckling and postweaning periods on expression of the adipocytokine Neuregulin 4 (Nrg4) and its relationship with nonalcoholic fatty liver disease (NAFLD) in adulthood. In vivo, male rats were adjusted to litter sizes of three (small litter, SL) or ten (normal litter, NL) on postnatal day 3. Pups were fed control chow (NL and SL groups) or a high-fat diet (NL-HF and SL-HF groups), and SL pups specifically were fed a fish oil diet rich in n-3 polyunsaturated fatty acids (n-3 PUFAs) (SL-FO group), from postnatal weeks 3 to 13. The results demonstrated that postnatal overnutrition increased weight, hepatic de novo lipogenesis (DNL) gene expression and NAFLD and decreased body temperature and Nrg4, Ucp1 and Pgc1a mRNA expression in adipose tissues in SL, SL-HF and NL-HF rats compared to NL rats in adulthood. The opposite trends were observed in SL-FO rats. Moreover, in vitro, recombinant NRG4 protein reduced lipid accumulation by inhibiting DNL gene expression in fatty HepG2 cells stimulated with sodium oleate. In HPAs, eicosapentaenoic acid (EPA) treatment elevated NRG4 production and caused adipocyte browning, and these effects were abrogated by PPARG antagonism. In conclusion, a postweaning n-3 PUFA diet enhanced Nrg4 expression in adipose tissues, associated with attenuation of NAFLD induced by SL rearing. Additionally, external NRG4 reduced lipogenesis in steatotic hepatocytes. Thus, white adipose tissue browning induced by n-3 PUFAs may promote NRG4 production through the PPARG pathway.  相似文献   

3.
Early postnatal nutrition has been associated with the long-term effects on glucose homeostasis in adulthood. To elucidate the molecular mechanisms by which undernutrition during early life leads to changes in insulin sensitivity, we investigated the insulin signaling in skeletal muscle of rats during development. Offspring of dams fed with either protein-free or normal diets during the first 10 days of lactation were studied from lactation period until adulthood. Early maternal undernutrition impaired secretion of insulin but maintained normal blood glucose levels until adulthood. Insulin receptor (IR) activation after insulin stimulation was decreased during the period of protein restriction. In addition, glucose uptake, insulin receptor substrate 1 (IRS-1) phosphorylation and glucose transporter 4 (GLUT-4) translocation in muscle were reduced in response to insulin during suckling. In contrast, non- or insulin-stimulated glucose uptake and GLUT-4 translocation were found significantly increased in muscle of adult offspring. Finally, basal association of phosphatidylinositol 3-kinase (PI3-kinase) with IRS-1 was increased and was highly stimulated by insulin in muscle from adult rats. Our findings suggest that early postnatal undernutrition increases insulin sensitivity in adulthood, which appears to be directly related to changes in critical steps required for glucose metabolism.  相似文献   

4.
Objective: The suckling period is one potentially “critical” period during which nutritional intake may permanently “program” metabolism to promote increased adult body weight and insulin resistance in later life. This study determined whether fructose introduced during the suckling period altered body weight and induced changes in fatty acid transport leading to insulin resistance in adulthood in rats. Methods and Procedures: Pups were randomly assigned to one of four diets: suckle controls (SCs), rat milk substitute formula (Rat Milk Substitute), fructose‐containing formula (Fructose), or galactose‐containing formula (Galactose). Starting at weaning, all pups received the same diet; at 8 weeks of age, half of the SC rats began ingesting a diet containing 65% kcal fructose (SC‐Fructose). This continued until animals were 12 weeks old and the study ended. Results: At weeks 8, 10, and 11, the Fructose group weighed more than SC and SC‐Fructose groups (P < 0.05). At weeks 8 and 10 of age, the Fructose group had significantly higher insulin concentrations vs. rats in the SC‐Fructose group. 3H‐Palmitate transport into vesicles from hind limb skeletal muscle was higher in Fructose vs. SC rats (P < 0.05). CD36 expression was increased in the sarcolemma but not in whole tissue homogenates from skeletal muscle from Fructose rats (P < 0.05) suggesting a redistribution of this protein associated with fatty acid uptake across the plasma membrane. This change in subcellular localization of CD36 is associated with insulin resistance in muscle. Discussion: Consuming fructose during suckling may result in lifelong changes in body weight, insulin secretion, and fatty acid transport involving CD36 in muscle and ultimately promote insulin resistance.  相似文献   

5.
Dysfunctional zinc signaling is implicated in disease processes including cardiovascular disease, Alzheimer''s disease and diabetes. Of the twenty-four mammalian zinc transporters, ZIP7 has been identified as an important mediator of the ‘zinc wave’ and in cellular signaling. Utilizing siRNA targeting Zip7 mRNA we have identified that Zip7 regulates glucose metabolism in skeletal muscle cells. An siRNA targeting Zip7 mRNA down regulated Zip7 mRNA 4.6-fold (p = 0.0006) when compared to a scramble control. This was concomitant with a reduction in the expression of genes involved in glucose metabolism including Agl, Dlst, Galm, Gbe1, Idh3g, Pck2, Pgam2, Pgm2, Phkb, Pygm, Tpi1, Gusb and Glut4. Glut4 protein expression was also reduced and insulin-stimulated glycogen synthesis was decreased. This was associated with a reduction in the mRNA expression of Insr, Irs1 and Irs2, and the phosphorylation of Akt. These studies provide a novel role for Zip7 in glucose metabolism in skeletal muscle and highlight the importance of this transporter in contributing to glycaemic control in this tissue.  相似文献   

6.
7.
Postnatal early overfeeding (EO) is related to later development of overweight and other metabolic disorders. As oxidative stress is implicated in most human diseases, as obesity and diabetes, we decided to study some parameters related to oxidative stress and insulin signaling in liver from EO animals in adult life. To induce EO, litter size was reduced to three pups per litter (SL: small litter) and groups with normal litter size (NL:10 pups per litter) were used as control. After weaning, rats had free access to standard diet and water. Body weight and food intake were monitored daily and offspring were killed at 180 days-old. Significant differences had P<.05 or less. As expected, SL rats had hyperphagia, higher body weight and higher visceral fat mass at weaning and adulthood. In liver, postnatal EO programmed for lower catalase (? 42%), superoxide dismutase (? 45%) and glutathione peroxidase (? 65%) activities. The evaluation of liver injury in adult SL group showed lower nitrite content (? 10%), higher liver and plasma malondialdehyde content (+ 25% and 1.1-fold increase, respectively). No changes of total protein bound carbonyl or Cu/Zn superoxide dismutase protein expression in liver were detected between the groups. Regarding insulin signaling pathway in liver, SL offspring showed lower IRβ (? 66%), IRS1 (? 50%), phospho-IRS1 (? 73%), PI3-K (? 30%) and Akt1 (? 58%). Indeed, morphological analysis showed that SL rats presented focal areas of inflammatory cell infiltrate and lipid drops in their cytoplasm characterizing a microsteatosis. Thus, we evidenced that postnatal EO can program the oxidative stress in liver, maybe contributing for impairment of the insulin signaling.  相似文献   

8.
We investigated the effect of fish oil supplementation for two consecutive generations on insulin sensitivity in rats. After the nursing period (21 days), female rats from the same prole were divided into two groups: (a) control group and (b) fish oil group. Female rats were supplemented with water (control) or fish oil at 1 g/kg body weight as a single bolus for 3 months. After this period, female rats were mated with male Wistar rats fed on a balanced chow diet (not supplemented). Female rats continued to receive supplementation throughout gestation and lactation periods. The same treatment was performed for the next two generations (G1 and G2). At 75 days of age, male offspring from G1 and G2 generations from both groups were used in the experiments. G1 rats did not present any difference with control rats. However, G2 rats presented reduction in glycemia and lipidemia and improvement in in vivo insulin sensitivity (model assessment of insulin resistance, insulin tolerance test) as well as in vitro insulin sensitivity in soleus muscle (glucose uptake and metabolism). This effect was associated with increased insulin-stimulated p38 MAP kinase phosphorylation and lower n-6/n-3 fatty acid ratio, but not with activation of proteins from insulin signaling (IR, IRS-1 and Akt). Global DNA methylation was decreased in liver but not in soleus muscle. These results suggest that long-term fish oil supplementation improves insulin sensitivity in association with increased insulin-stimulated p38 activation and decreased n-6:n-3 ratio in skeletal muscle and decreased global DNA methylation in liver.  相似文献   

9.
It is now known that prenatal ethanol (EtOH) exposure is associated with impaired glucose tolerance and insulin resistance in rat offspring, but the underlying mechanism(s) is not known. To test the hypothesis that in vivo insulin signaling through phosphatidylinositol 3 (PI3)-kinase is reduced in skeletal muscle of adult rat offspring exposed to EtOH in utero, we gave insulin intravenously to these rats and probed steps in the PI3-kinase insulin signaling pathway. After insulin treatment, EtOH-exposed rats had decreased tyrosine phosphorylation of the insulin receptor beta-subunit and of insulin receptor substrate-1 (IRS-1), as well as reduced IRS-1-associated PI3-kinase in the gastrocnemius muscle compared with control rats. There was no significant difference in basal or insulin-stimulated Akt activity between EtOH-exposed rats and controls. Insulin-stimulated PKC isoform zeta phosphorylation and membrane association were reduced in EtOH-exposed rats compared with controls. Muscle insulin binding and peptide contents of insulin receptor, IRS-1, p85 subunit of PI3-kinase, Akt/PKB, and atypical PKC isoform zeta were not different between EtOH-exposed rats and controls. Thus insulin resistance in rat offspring exposed to EtOH in utero may be explained, at least in part, by impaired insulin signaling through the PI3-kinase pathway in skeletal muscle.  相似文献   

10.
Maternal overnutrition during suckling period is associated with increased risk of metabolic disorders in the offspring. We aimed to assess the effect of Vitis vinifera L. grape skin extract (ACH09) on cardiovascular and metabolic disorders in adult male offspring of rats fed a high-fat (HF) diet during lactation. Four groups of female rats were fed: control diet (7% fat), ACH09 (7% fat plus 200 mg kg?1 d?1 ACH09 orally), HF (24% fat), and HF+ACH09 (24% fat plus 200 mg kg?1 d?1 ACH09 orally) during lactation. After weaning, all male offspring were fed a control diet and sacrificed at 90 or 180 days old. Systolic blood pressure was increased in adult offspring of HF-fed dams and ACH09 prevented the hypertension. Increased adiposity, plasma triglyceride, glucose levels and insulin resistance were observed in offspring from both ages, and those changes were reversed by ACH09. Expression of insulin cascade proteins IRS-1, AKT and GLUT4 in the soleus muscle was reduced in the HF group of both ages and increased by ACH09. The plasma oxidative damage assessed by malondialdehyde levels was increased, and nitrite levels decreased in the HF group of both ages, which were reversed by ACH09. In addition, ACH09 restored the decreased plasma and mesenteric arteries antioxidant activities of superoxide dismutase, catalase and glutathione peroxidase in the HF group. In conclusion, the treatment of HF-fed dams during lactation with ACH09 provides protection from later-life hypertension, body weight gain, insulin resistance and oxidative stress. The protective effect ACH09 may involve NO synthesis, antioxidant action and activation of insulin-signaling pathways.  相似文献   

11.
12.
Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity in isolated skeletal muscle of insulin-resistant, prediabetic obese Zucker rats and if these effects of GSK3 inhibition are associated with enhanced insulin signaling. Type I soleus and type IIb epitrochlearis muscles from female obese Zucker rats were incubated in the absence or presence of a selective, small organic GSK3 inhibitor (1 microM CT118637, Ki < 10 nM for GSK3alpha and GSK3beta). Maximal insulin stimulation (5 mU/ml) of glucose transport activity, glycogen synthase activity, and selected insulin-signaling factors [tyrosine phosphorylation of insulin receptor (IR) and IRS-1, IRS-1 associated with p85 subunit of phosphatidylinositol 3-kinase, and serine phosphorylation of Akt and GSK3] were assessed. GSK3 inhibition enhanced (P <0.05) basal glycogen synthase activity and insulin-stimulated glucose transport in obese epitrochlearis (81 and 24%) and soleus (108 and 20%) muscles. GSK3 inhibition did not modify insulin-stimulated tyrosine phosphorylation of IR beta-subunit in either muscle type. However, in obese soleus, GSK3 inhibition enhanced (all P < 0.05) insulin-stimulated IRS-1 tyrosine phosphorylation (45%), IRS-1-associated p85 (72%), Akt1/2 serine phosphorylation (30%), and GSK3beta serine phosphorylation (39%). Substantially smaller GSK3 inhibitor-mediated enhancements of insulin action on these insulin signaling factors were observed in obese epitrochlearis. These results indicate that selective GSK3 inhibition enhances insulin action in insulin-resistant skeletal muscle of the prediabetic obese Zucker rat, at least in part by relieving the deleterious effects of GSK3 action on post-IR insulin signaling. These effects of GSK3 inhibition on insulin action are greater in type I muscle than in type IIb muscle from these insulin-resistant animals.  相似文献   

13.
Elevated circulating free fatty acid levels are important contributors to insulin resistance in the muscle and liver, but the underlying mechanisms require further elucidation. Here, we show that geranylgeranyl diphosphate synthase 1 (GGPPS), which is a branch point enzyme in the mevalonic acid pathway, promotes lipid-induced muscle insulin resistance through activation of the RhoA/Rho kinase signaling pathway. We have found that metabolic perturbation would increase GGPPS expression in the skeletal muscles of db/db mice and high fat diet-fed mice. To address the metabolic effects of GGPPS activity in skeletal muscle, we generated mice with specific GGPPS deletions in their skeletal muscle tissue. Heterozygous knock-out of GGPPS in the skeletal muscle improved systemic insulin sensitivity and glucose homeostasis in mice fed both normal chow and high fat diets. These metabolic alterations were accompanied by activated PI3K/Akt signaling and enhanced glucose uptake in the skeletal muscle. Further investigation showed that the free fatty acid-stimulated GGPPS expression in the skeletal muscle was able to enhance the geranylgeranylation of RhoA, which further induced the inhibitory phosphorylation of IRS-1 (Ser-307) by increasing Rho kinase activity. These results implicate a crucial role of the GGPPS/RhoA/Rho kinase/IRS-1 pathway in skeletal muscle, in which it mediates lipid-induced systemic insulin resistance in obese mice. Therefore, skeletal muscle GGPPS may represent a potential pharmacological target for the prevention and treatment of obesity-related type 2 diabetes.  相似文献   

14.
The positive regulation of insulin pathway in skeletal muscle results in increased activity of the mammalian target of rapamycin (mTOR), a positive effector of mRNA translation rate and protein synthesis. Studies that assess the activity of this protein in response to chronic high-fat diet (HFD) are scarce and controversial, and to date, there are no studies evaluating the mTOR pathway in infants exposed to gestational and postgestational HFD. This study investigated the effect of maternal HFD on skeletal muscle morphology and on phosphorylation of proteins that comprise the intracellular mTOR signaling pathway in soleus muscle of offspring at weaning. For this purpose, 10 days prior to conception, 39 female Wistar rats were randomly assigned to either control diet (CTL) or HFD. Later, rats were distributed into four groups according to gestational and postpregnancy diet: CTL/CTL (n=10), CTL/HF (n=11), HF/HF (n=10) and HF/CTL (n=8). After 21 days of lactation, pups were killed, and blood samples and soleus and gastrocnemius skeletal muscle were collected for analysis. We observed an influence of maternal postgestational diet, rather than gestational diet, in promoting an obese phenotype, characterized by body fat accumulation, insulin resistance and high serum leptin, glucose, triglycerides and cholesterol levels (P<.05). We have also detected alterations on skeletal muscle morphology — with reduced myofiber density — and impairment on S6 kinase 1 and 4E binding protein-1 phosphorylation (P<.05). These results emphasize the importance of maternal diet during lactation on muscle morphology and on physiological adaptations of infant rats.  相似文献   

15.
Complete deafferentation of the medial basal hypothalamus (MBH) in 13 primiparous Sprague-Dawley rats was performed on or about Day 14 of gestation. The most significant result was a depression in litter growth as evidenced by the marked number of dead pups by the postpartal Day 5 and the loss of weight in those that survived. Control animals deafferented in the same region but only along one side (the incomplete deafferented rats, n = 9) adequately maintained young. Animals in both groups gave birth as expected. There were no significant differences in the latency and duration of retrieving and crouching behaviors. Therefore, nursing behavior appeared normal. Only milk ejection seemed disturbed, judging from the fact that suckling alone could not release milk, oxytocin in addition was needed. Thus, by the methods we employed, the MBH appears to be necessary for lactation but not for nursing behavior in the primiparous rat.  相似文献   

16.
Increasing evidence supports a negative role of glycogen synthase kinase-3 (GSK-3) in regulation of skeletal muscle glucose transport. We assessed the effects of chronic treatment of insulin-resistant, prediabetic obese Zucker (fa/fa) rats with a highly selective GSK-3 inhibitor (CT118637) on glucose tolerance, whole body insulin sensitivity, plasma lipids, skeletal muscle insulin signaling, and in vitro skeletal muscle glucose transport activity. Obese Zucker rats were treated with either vehicle or CT118637 (30 mg/kg body wt) twice per day for 10 days. Fasting plasma insulin and free fatty acid levels were reduced by 14 and 23% (P < 0.05), respectively, in GSK-3 inhibitor-treated animals compared with vehicle-treated controls. The glucose response during an oral glucose tolerance test was reduced by 18% (P < 0.05), and whole body insulin sensitivity was increased by 28% (P < 0.05). In vivo insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (50%) and IRS-1-associated phosphatidylinositol-3' kinase (79%) relative to fasting plasma insulin levels were significantly elevated (P < 0.05) in plantaris muscles of GSK-3 inhibitor-treated animals. Whereas basal glucose transport in isolated soleus and epitrochlearis muscles was unaffected by chronic GSK-3 treatments, insulin stimulation of glucose transport above basal was significantly enhanced (32-60%, P < 0.05). In summary, chronic treatment of insulin-resistant, prediabetic obese Zucker rats with a specific GSK-3 inhibitor enhances oral glucose tolerance and whole body insulin sensitivity and is associated with an amelioration of dyslipidemia and an improvement in IRS-1-dependent insulin signaling in skeletal muscle. These results provide further evidence that selective targeting of GSK-3 in muscle may be an effective intervention for the treatment of obesity-associated insulin resistance.  相似文献   

17.
18.

Background

It is believed that the endotoxin lipopolysaccharide (LPS) is implicated in the metabolic perturbations associated with both sepsis and obesity (metabolic endotoxemia). Here we examined the role of inducible nitric oxide synthase (iNOS) in skeletal muscle insulin resistance using LPS challenge in rats and mice as in vivo models of endotoxemia.

Methodology/Principal Findings

Pharmacological (aminoguanidine) and genetic strategies (iNOS−/− mice) were used to counter iNOS induction in vivo. In vitro studies using peroxynitrite (ONOO) or inhibitors of the iNOS pathway, 1400 W and EGCG were conducted in L6 myocytes to determine the mechanism by which iNOS mediates LPS-dependent insulin resistance. In vivo, both pharmacological and genetic invalidation of iNOS prevented LPS-induced muscle insulin resistance. Inhibition of iNOS also prevented insulin resistance in myocytes exposed to cytokine/LPS while exposure of myocytes to ONOO fully reproduced the inhibitory effect of cytokine/LPS on both insulin-stimulated glucose uptake and PI3K activity. Importantly, LPS treatment in vivo and iNOS induction and ONOO treatment in vitro promoted tyrosine nitration of IRS-1 and reduced insulin-dependent tyrosine phosphorylation.

Conclusions/Significance

Our work demonstrates that iNOS-mediated tyrosine nitration of IRS-1 is a key mechanism of skeletal muscle insulin resistance in endotoxemia, and presents nitrosative modification of insulin signaling proteins as a novel therapeutic target for combating muscle insulin resistance in inflammatory settings.  相似文献   

19.
Emerging evidences demonstrate that excess aldosterone and insulin interact at target tissues. It has been shown that increased levels of aldosterone contribute to the development of insulin resistance and thus act as a risk factor for the development of type-2 diabetes mellitus. However, the molecular mechanisms involved in this scenario are yet to be identified. This study was designed to assess the dose-dependent effects of aldosterone on insulin signal transduction and glucose oxidation in the skeletal muscle (gastrocnemius) of adult male rat. Healthy adult male albino rats of Wistar strain (Rattus norvegicus) weighing 180?C200?g were used in this study. Rats were divided into four groups. Group I: control (treated with 1?% ethanol only), group II: aldosterone treated (10???g /kg body weight, twice daily for 15?days), group III: aldosterone treated (20???g /kg body weight, twice daily for 15?days), and group IV: aldosterone treated (40???g/kg body weight, twice daily for 15?days). Excess aldosterone caused glucose intolerance in a dose-dependent manner. Serum insulin and aldosterone were significantly increased, whereas serum testosterone was decreased. Aldosterone treatment impaired the rate of glucose uptake, oxidation, and insulin signal transduction in the gastrocnemius muscle through defective expression of IR, IRS-1, Akt, AS160, and GLUT4 genes. Phosphorylation of IRS-1, ??-arrestin-2, and Akt was also reduced in a dose-dependent manner. Excess aldosterone results in glucose intolerance as a result of impaired insulin signal transduction leading to decreased glucose uptake and oxidation in skeletal muscle. In addition to this, it is inferred that excess aldosterone may act as one of the causative factors for the onset of insulin resistance and thus increased incidence of type-2 diabetes.  相似文献   

20.
We tried to elucidate the effects of a brief and severe model of food restriction on insulin sensitivity in female rats, focusing on key proteins involved in the insulin signalling pathway in skeletal muscle and adipose tissue after 5, 10 and 15 days of food restriction. Using euglycemic clamp, we detected that food-restricted rats are significantly less sensitive to insulin action than control rats. However, the time of restriction promotes a progressive increase on insulin sensitivity. The analysis of the insulin signalling pathway showed a tissue-specific regulation of several proteins involved in insulin signalling. In skeletal muscle, insulin receptor substrate 1 and Glut4 are up-regulated at the end of the food restriction period, just the opposite of what we found in adipose tissue. In conclusion, a 50% reduction of food intake modulates insulin sensitivity through a tissue-specific regulation of the insulin signalling pathway in the main target tissues for this hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号