首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Linker of the nucleoskeleton and the cytoskeleton (LINC) complexes are composed of SUN and KASH domain-containing proteins and bridge the inner and outer membranes of the nuclear envelope. LINC complexes play critical roles in nuclear positioning, cell polarization and cellular stiffness. Previously, we reported the homotrimeric structure of human SUN2. We have now determined the crystal structure of the human SUN2-KASH complex. In the complex structure, the SUN domain homotrimer binds to three independent “hook”-like KASH peptides. The overall conformation of the SUN domain in the complex closely resembles the SUN domain in its apo state. A major conformational change involves the AA''-loop of KASH-bound SUN domain, which rearranges to form a mini β-sheet that interacts with the KASH peptide. The PPPT motif of the KASH domain fits tightly into a hydrophobic pocket on the homotrimeric interface of the SUN domain, which we termed the BI-pocket. Moreover, two adjacent protomers of the SUN domain homotrimer sandwich the KASH domain by hydrophobic interaction and hydrogen bonding. Mutations of these binding sites disrupt or reduce the association between the SUN and KASH domains in vitro. In addition, transfection of wild-type, but not mutant, SUN2 promotes cell migration in Ovcar-3 cells. These results provide a structural model of the LINC complex, which is essential for additional study of the physical and functional coupling between the cytoplasm and the nucleoplasm.  相似文献   

3.
4.
In addition to DNA repair pathways, cells utilize translesion DNA synthesis (TLS) to bypass DNA lesions during replication. During TLS, Y-family DNA polymerase (Polη, Polκ, Polι and Rev1) inserts specific nucleotide opposite preferred DNA lesions, and then Polζ consisting of two subunits, Rev3 and Rev7, carries out primer extension. Here, we report the complex structures of Rev3-Rev7-Rev1CTD and Rev3-Rev7-Rev1CTDPolκRIR. These two structures demonstrate that Rev1CTD contains separate binding sites for Pol- and Rev7. Our BIAcore experiments provide additional support for the notion that the interaction between Rev3 and Rev7 increases the affinity of Rev7 and Rev1. We also verified through FRET experiment that Rev1, Rev3, Rev7 and Polκ form a stable quaternary complex in vivo, thereby suggesting an efficient switching mechanism where the “inserter” polymerase can be immediately replaced by an “extender” polymerase within the same quaternary complex.  相似文献   

5.
6.
The process of clathrin-mediated endocytosis from the plasma membrane has been the subject of many biological and biochemical investigations. Recent atomic resolution structures determined by X-ray crystallography now enable the molecular basis for the interactions of some components of the endocytic machinery to be understood in detail.  相似文献   

7.
8.
9.
Discovered two decades ago, Piwi-interacting RNAs (piRNAs) play critical roles in gene regulation, transposon element repression, and antiviral defense. Dysregulation of piRNAs has been noted in diverse human diseases including cancers. Recently, extensive studies have revealed that many more proteins are involved in piRNA biogenesis. This review will summarize the recent progress in piRNA biogenesis and functions, especially the molecular mechanisms by which piRNA biogenesis-related proteins contribute to piRNA processing.  相似文献   

10.
11.
12.
Neuropilins (Nrps) are co-receptors for class 3 semaphorins and vascular endothelial growth factors and important for the development of the nervous system and the vasculature. The extracellular portion of Nrp is composed of two domains that are essential for semaphorin binding (a1a2), two domains necessary for VEGF binding (b1b2), and one domain critical for receptor dimerization (c). We report several crystal structures of Nrp1 and Nrp2 fragments alone and in complex with antibodies that selectively block either semaphorin or vascular endothelial growth factor (VEGF) binding. In these structures, Nrps adopt an unexpected domain arrangement in which the a2, b1, and b2 domains form a tightly packed core that is only loosely connected to the a1 domain. The locations of the antibody epitopes together with in vitro experiments indicate that VEGF and semaphorin do not directly compete for Nrp binding. Based upon our structural and functional data, we propose possible models for ligand binding to neuropilins.  相似文献   

13.
A number of highly specialized DNA polymerases with the ability to replicate through DNA lesions have been identified. In this issue of Structure, Nair et al. show how one such polymerase, yeast Rev1, accomplishes the DNA lesion bypass task.  相似文献   

14.
Eukaryotic cells distribute materials among intracellular organelles and secrete into the extracellular space through cargo-loaded vesicles. A concluding step during vesicular transport is the fusion of a transport vesicle with a target membrane. SNARE proteins are essential for all vesicular fusion steps, thus they possibly comprise a conserved membrane fusion machinery. According to the "zipper" model, they assemble into stable membrane-bridging complexes that gradually bring membranes in juxtaposition. Hence, complex formation may provide the necessary energy for overcoming the repulsive forces between two membranes. During the last years, detailed structural and functional studies have extended the evidence that SNAREs are mostly in accord with the zipper model. Nevertheless, it remains unclear whether SNARE assembly between membranes directly leads to the merger of lipid bilayers.  相似文献   

15.
16.
Phospholipase D (PLD) and its metabolic active product phosphatidic acid (PA) engage in a wide range of physiopathologic processes in the cell. PLDs have been considered as a potential and promising drug target. Recently, the crystal structures of PLDs in mammalian and plant have been solved at atomic resolution. These achievements allow us to understand the structural differences among different species of PLDs and the functions of their key domains. In this review, we summarize the sequence and structure of different species of PLD isoforms, and discuss the structural mechanisms for PLD interactions with their binding partners and the functions of each key domain in the regulation of PLDs activation and catalytic reaction.  相似文献   

17.
Structural insights into the clathrin coat   总被引:2,自引:0,他引:2  
Clathrin is a cytoplasmic protein best known for its role in endocytosis and intracellular trafficking. The diverse nature of clathrin has recently become apparent, with strong evidence available suggesting roles in both chromosome segregation and reassembly of the Golgi apparatus during mitosis. Clathrin functions as a heterohexamer, adopting a three-legged triskelion structure of three clathrin light chains and three heavy chains. During endocytosis clathrin forms a supportive network about the invaginating membrane, interacting with itself and numerous adapter proteins. Advances in the field of structural biology have led us to a greater understanding of clathrin in its assembled state, the clathrin lattice. Combining techniques such as X-ray crystallography, NMR, and cryo-electron microscopy has allowed us to piece together the intricate nature of clathrin-coated vesicles and the interactions of clathrin with its many binding partners. In this review I outline the roles of clathrin within the cell and the recent structural advances that have improved our understanding of clathrin-clathrin and clathrin-protein interactions.  相似文献   

18.
Structural insights into SARS coronavirus proteins   总被引:11,自引:0,他引:11  
  相似文献   

19.
20.
《Molecular cell》2023,83(14):2464-2477.e5
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号