首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundIncreased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems.MethodsThe importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry.ResultsA significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of [13C5]glutamine demonstrated that by 12 h > 50% of excreted glutathione was derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a GLS-specific inhibitor, reduced cell proliferation and viability and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES-induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity.ConclusionsWe demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well.General significanceGlutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability.  相似文献   

2.
Marine bivalves such as the hard shell clams Mercenaria mercenaria and eastern oysters Crassostrea virginica are affected by multiple stressors, including fluctuations in temperature and CO2 levels in estuaries, and these stresses are expected to be exacerbated by ongoing global climate change. Hypercapnia (elevated CO2 levels) and temperature stress can affect survival, growth and development of marine bivalves, but the cellular mechanisms of these effects are not yet fully understood. In this study, we investigated whether oxidative stress is implicated in cellular responses to elevated temperature and CO2 levels in marine bivalves. We measured the whole-organism standard metabolic rate (SMR), total antioxidant capacity (TAOC), and levels of oxidative stress biomarkers in the muscle tissues of clams and oysters exposed to different temperatures (22 and 27 °C) and CO2 levels (the present day conditions of ~ 400 ppm CO2 and 800 ppm CO2 predicted by a consensus business-as-usual IPCC emission scenario for the year 2100). SMR was significantly higher and the antioxidant capacity was lower in oysters than in clams. Aerobic metabolism was largely temperature-independent in these two species in the studied temperature range (22–27 °C). However, the combined exposure to elevated temperature and hypercapnia led to elevated SMR in clams indicating elevated costs of basal maintenance. No persistent oxidative stress signal (measured by the levels of protein carbonyls, and protein conjugates with malondialdehyde and 4-hydroxynonenal) was observed during the long-term exposure to moderate warming (+ 5 °C) and hypercapnia (~ 800 ppm CO2). This indicates that long-term exposure to moderately elevated CO2 and temperature minimally affects the cellular redox status in these bivalve species and that the earlier observed negative physiological effects of elevated CO2 and temperature must be explained by other cellular mechanisms.  相似文献   

3.
The purpose of the work was to provide a crystallographic demonstration of the venerable idea that CO photolyzed from ferrous heme-a3 moves to the nearby cuprous ion in the cytochrome c oxidases. Crystal structures of CO-bound cytochrome ba3-oxidase from Thermus thermophilus, determined at ~ 2.8–3.2 Å resolution, reveal a Fe–C distance of ~ 2.0 Å, a Cu–O distance of 2.4 Å and a Fe–C–O angle of ~ 126°. Upon photodissociation at 100 K, X-ray structures indicate loss of Fea3–CO and appearance of CuB–CO having a Cu–C distance of ~ 1.9 Å and an O–Fe distance of ~ 2.3 Å. Absolute FTIR spectra recorded from single crystals of reduced ba3–CO that had not been exposed to X-ray radiation, showed several peaks around 1975 cm? 1; after photolysis at 100 K, the absolute FTIR spectra also showed a significant peak at 2050 cm? 1. Analysis of the ‘light’ minus ‘dark’ difference spectra showed four very sharp CO stretching bands at 1970 cm? 1, 1977 cm? 1, 1981 cm? 1, and 1985 cm? 1, previously assigned to the Fea3–CO complex, and a significantly broader CO stretching band centered at ~ 2050 cm? 1, previously assigned to the CO stretching frequency of CuB bound CO. As expected for light propagating along the tetragonal axis of the P43212 space group, the single crystal spectra exhibit negligible dichroism. Absolute FTIR spectrometry of a CO-laden ba3 crystal, exposed to an amount of X-ray radiation required to obtain structural data sets before FTIR characterization, showed a significant signal due to photogenerated CO2 at 2337 cm? 1 and one from traces of CO at 2133 cm? 1; while bands associated with CO bound to either Fea3 or to CuB in “light” minus “dark” FTIR difference spectra shifted and broadened in response to X-ray exposure. In spite of considerable radiation damage to the crystals, both X-ray analysis at 2.8 and 3.2 Å and FTIR spectra support the long-held position that photolysis of Fea3–CO in cytochrome c oxidases leads to significant trapping of the CO on the CuB atom; Fea3 and CuB ligation, at the resolutions reported here, are otherwise unaltered. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

4.
Carbon dioxide (CO2) acts as a weak acid in water and the increasing level of CO2 in the atmosphere leads to ocean acidification. In addition, possible leakage from sub-seabed storage of anthropogenic CO2 may pose a threat to the marine environment. 1H NMR spectroscopy was applied to extracts of hemolymph, gills and leg muscle from shore crabs (Carcinus maenas) to examine the metabolic response to elevated levels of CO2. Crabs were exposed to different levels of CO2‐acidified seawater with pHNBS 7.4, 6.6 and 6.3 (pCO2 ~ 2600, 16,000 and 30,000 μatm, respectively) for two weeks (level-dependent exposure). In addition, the metabolic response was followed for up to 4 weeks of exposure to seawater pHNBS 6.9 (pCO2 ~ 7600 μatm). Partial least squares regression analysis of data showed an increased differentiation between metabolic fingerprints of controls and exposed groups for all sample types with increasing CO2 levels. Difference between controls and animals subjected to time-dependent exposure appeared after 4 weeks in the hemolymph and gills, and after 48 h of exposure in the leg muscle. Changes in metabolic profiles were mainly due to a reduced level of important intracellular osmolytes such as amino acids (glycine, proline), while the level of other metabolites varied between the different sample types. The results are similar to what is observed in animals exposed to hypo-osmotic stress and may suggest disturbances in intracellular iso-osmotic regulation. The results may also reflect increased catabolism of amino acids to supply the body fluids with proton-buffering ammonia (NH3). Alternatively, the findings may reflect an exhaustive effect of CO2 exposure.  相似文献   

5.
We present a new high resolution speleothem stable isotope record from the Villars Cave (SW-France) that covers part of marine isotope stage (MIS) 3. The Vil14 stalagmite grew between ~ 52 and 29 ka. The δ13C profile is used as a palaeoclimate proxy and clearly shows the interstadial substages 13, 12 and 11. The new results complement and corroborate previously published stalagmite records Vil9 and Vil27 from the same site. The Vil14 stalagmite chronology is based on 12 Th-U dating by MC-ICP-MS and 3 by TIMS. A correction for detrital contamination was done using the 230Th/232Th activity ratio measured on clay collected in Villars Cave. The Vil14 results reveal that the onset of Dansgaard–Oeschger (DO) events 13 and 12 occurred at ~ 49.8 ka and ~ 47.8 ka, respectively. Within uncertainties, this is coherent with the latest NorthGRIP time scale (GICC05-60 ka) and with speleothem records from Central Alps. Our data show an abrupt δ13C increase at the end of DO events 14 to 12 which coincides with a petrographical discontinuity probably due to a rapid cooling. As observed for Vil9 and Vil27, Vil14 growth significantly slowed down after ~ 42 ka and finally stopped ~ 29 ka ago where the δ13C increase suggests a strong climate deterioration that coincides with both North Atlantic sea level and sea surface temperature drop.  相似文献   

6.
We report the results of a baseline study on the effects of Russian wheat aphid infestation on barley lines grown under ambient and elevated (450 and 550 μmol mol 1) CO2 concentrations [CO2]. Elevated CO2 impacted on plant biomass, C:N ratios and leaf nitrogen concentrations. Visible manifestation of aphid feeding related damage was assessed by examining resultant chlorosis and leaf roll under ambient and two elevated [CO2] levels using a control and three resistant barley host combinations. Elevated [CO2] had a significant positive effect on the growth of the four barley lines that were not infested by the aphids. However under the same conditions aphid feeding under elevated CO2 conditions caused very high biomass loss, which was more noticeable in experiments involving non-resistant PUMA than in the resistant barley lines. The results of this study demonstrate that CO2 enrichment substantially increases aphid populations of RWASA1 and RWASA2 on the four barley lines investigated. Furthermore, aphid populations were higher on non-resistant PUMA than the three resistant lines and the RWASA2 biotype out-performed RWASA1 in each case. Under elevated [CO2], aphid feeding, resulted in a significant increase in the leaf C:N ratios (as a percentage change) in most treatments, compared to levels recorded on uninfested plants. The resistant lines also showed a significant reduction in leaf nitrogen (~ 40% for PUMA and not less than 30% for the resistant STARS lines tested). C:N ratio changes and N loss correlated to [CO2] and aphid biotype. By 28 days of infestation, most of the non-resistant PUMA line in particular showed significant irrecoverable levels of leaf chlorosis. At level 9 rating on the chlorosis scale (i.e. plant death when recovery was not possible), experiments were terminated. As aphid success is unlikely to be the sole product of [CO2], but also of other limiting nutrients such as N, it may be worth further investigating the effect of plant quality and ultimately plant nutrition on the population growth of aphids.  相似文献   

7.
BackgroundProton magnetic resonance spectroscopy (1H-MRS) clinical studies of patients with schizophrenia document prefrontal N-acetylaspartate (NAA) reductions, suggesting an effect of the disease or of antipsychotic medications. We studied in the rat the effect of prolonged exposure to a low-dose of the NMDA glutamate receptor antagonist phencyclidine (PCP) on levels of NAA, glutamate and glutamine in several brain regions where metabolite reductions have been reported in chronically medicated patients with schizophrenia.MethodsTwo groups of ten rats each were treated with PCP (2.58 mg/kg/day) or vehicle and were sacrificed after 1 month treatment. Concentrations of neurochemicals were determined with high resolution magic angle (HR-MAS) 1H-MRS at 11.7 T in ex vivo punch biopsies from the medial frontal and cingulate cortex, striatum, nucleus accumbens, amygdala and ventral hippocampus.ResultsPCP treatment reduced NAA, glutamate, glycine, aspartate, creatine, lactate and GABA in medial frontal cortex. In the nucleus accumbens, PCP reduced levels of NAA, aspartate and glycine; similarly aspartate and glycine were reduced in the striatum. Finally the amygdala and hippocampus had elevations in glutamine and choline, respectively.ConclusionsLow-dose PCP in rats models prefrontal NAA and glutamate reductions documented in chronically-ill schizophrenia patients. Chronic glutamate NMDA receptor blockade in rats replicates an endophenotype in schizophrenia and may contribute to the prefrontal hypometabolic state in schizophrenia.  相似文献   

8.
《BBA》2014,1837(2):287-295
The Redox-Optimized ROS Balance [R-ORB] hypothesis postulates that the redox environment [RE] is the main intermediary between mitochondrial respiration and reactive oxygen species [ROS]. According to R-ORB, ROS emission levels will attain a minimum vs. RE when respiratory rate (VO2) reaches a maximum following ADP stimulation, a tenet that we test herein in isolated heart mitochondria under forward electron transport [FET]. ROS emission increased two-fold as a function of changes in the RE (~ 400 to ~ 900 mV·mM) in state 4 respiration elicited by increasing glutamate/malate (G/M). In G/M energized mitochondria, ROS emission decreases two-fold for RE ~ 500 to ~ 300 mV·mM in state 3 respiration at increasing ADP. Stressed mitochondria released higher ROS, that was only weakly dependent on RE under state 3. As a function of VO2, the ROS dependence on RE was strong between ~ 550 and ~ 350 mV·mM, when VO2 is maximal, primarily due to changes in glutathione redox potential. A similar dependence was observed with stressed mitochondria, but over a significantly more oxidized RE and ~ 3-fold higher ROS emission overall, as compared with non-stressed controls. We conclude that under non-stressful conditions mitochondrial ROS efflux decreases when the RE becomes less reduced within a range in which VO2 is maximal. These results agree with the R-ORB postulate that mitochondria minimize ROS emission as they maximize VO2 and ATP synthesis. This relationship is altered quantitatively, but not qualitatively, by oxidative stress although stressed mitochondria exhibit diminished energetic performance and increased ROS release.  相似文献   

9.
《Ecological Engineering》2006,26(3):241-251
Constructed wetlands (CW), widely used to remove nutrients from runoff waters, transform some of the carbon and nitrogen they receive into greenhouse gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), and may therefore have adverse atmospheric impacts. We studied seasonal and temporal changes in C degradation and emissions of CH4 and N2O of a boreal CW used to purify peat mining runoff waters 5 (in 1992) and 15 (in 2001–2002) years after construction. There was a remarkable change in the cycling of carbon in the wetland as the number of years in operation increased: the mean CH4 emission tripled from 140 to 400 mg CH4 m−2 d−1 and the mean CO2 release (respiration) doubled from 7270 to 13 600 mg CO2 m−2 d−1 in the 10-year period. The reasons for the increased C gas production were the increased plant biomass, which doubled in 10 years, and a 3 °C higher average temperature in 2002 than in 1992. The N2O fluxes did not change during the study period: the mean emissions were 340 and 450 μg N2O m−2 d−1 in 1992 and 2002.  相似文献   

10.
Haberlea rhodopensis is a homoiochlorophyllous resurrection plant that shows a low rate of leaf net CO2 uptake (4–6 μmol m?2 s?1) under saturating photosynthetic photon flux densities in air (21% O2 and about 390 ppm CO2). However, leaf net CO2 uptake reaches values of 17–18 μmol m?2 s?1 under saturating CO2 and light. H. rhodopensis leaves have a very low mesophyll CO2 conductance that can partly explain the low rate of leaf net CO2 uptake in normal air. Experimental evidences suggest that mesophyll conductance is not sensitive to temperature in the 20–35 °C range. In addition, it is shown that the (1) transpiration rate of H. rhodopensis is nearly linearly related to the vapour pressure difference between the leaf and the ambient air within the interval from 0.5 kPa to 2.5 kPa at a leaf temperature of 25 °C and (2) leaf net CO2 uptake in normal air under saturating light does not change much with leaf temperature (between 20 °C and 30 °C). At a leaf relative water content of between 90% and 30%, the decrease of leaf net CO2 assimilation during drought can be explained by a decrease of leaf CO2 diffusional conductance. Accordingly the non-photochemical chlorophyll fluorescence quenching decreases only at relative water contents lower than 20%, indicating that photosynthetic activity maintains a trans-thylakoidal proton gradient over a wide range of leaf water contents. Moreover, PSII photochemistry (as estimated by the Fv/Fm ratio and the thermoluminescence B band intensity) is only affected at leaf relative water contents lower than about 20%, thus confirming that primary photosynthetic reactions are resistant to drought. Interestingly, the effect of leaf desiccation on photosynthetic capacity, measured at very high ambient CO2 molar ratios under saturating PPFD, is identical to that observed for three non-resurrection C3 mesophytes. This demonstrates that the photosynthetic apparatus of H. rhodopensis is not more resistant to desiccation when compared to other C3 plants. Since the leaf area decreases by more than 50% when the leaf relative water content is reduced to about 40% during drought it is supposed, following Farrant et al. [Farrant, J.M., Vander, W.C., Lofell, D.A., Bartsch, S., Whittaker, A., 2003. An investigation into the role of light during desiccation of three angiosperms resurrection plants. Plant Cell Environ. 26, 1275–1286], that H. rhodopensis leaf cells avoid mechanical stress.  相似文献   

11.
HET-C2 is a fungal glycolipid transfer protein (GLTP) that uses an evolutionarily-modified GLTP-fold to achieve more focused transfer specificity for simple neutral glycosphingolipids than mammalian GLTPs. Only one of HET-C2's two Trp residues is topologically identical to the three Trp residues of mammalian GLTP. Here, we provide the first assessment of the functional roles of HET-C2 Trp residues in glycolipid binding and membrane interaction. Point mutants HET-C2W208F, HET-C2W208A and HET-C2F149Y all retained > 90% activity and 80–90% intrinsic Trp fluorescence intensity; whereas HET-C2F149A transfer activity decreased to ~ 55% but displayed ~ 120% intrinsic Trp emission intensity. Thus, neither W208 nor F149 is absolutely essential for activity and most Trp emission intensity (~ 85–90%) originates from Trp109. This conclusion was supported by HET-C2W109Y/F149Y which displayed ~ 8% intrinsic Trp intensity and was nearly inactive. Incubation of the HET-C2 mutants with 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles containing different monoglycosylceramides or presented by lipid ethanol-injection decreased Trp fluorescence intensity and blue-shifted the Trp λmax by differing amounts compared to wtHET-C2. With HET-C2 mutants for Trp208, the emission intensity decreases (~ 30–40%) and λmax blue-shifts (~ 12 nm) were more dramatic than for wtHET-C2 or F149 mutants and closely resembled human GLTP. When Trp109 was mutated, the glycolipid induced changes in HET-C2 emission intensity and λmax blue-shift were nearly nonexistent. Our findings indicate that the HET-C2 Trp λmax blue-shift is diagnostic for glycolipid binding; whereas the emission intensity decrease reflects higher environmental polarity encountered upon nonspecific interaction with phosphocholine headgroups comprising the membrane interface and specific interaction with the hydrated glycolipid sugar.  相似文献   

12.
An increase in atmospheric CO2 concentration ([CO2]) together with other climate change factors could greatly affect agricultural productivity. Understanding the impact of the change in atmospheric [CO2] in conjunction with the ongoing global change is crucial to prepare for mitigation and any adaptation for future agricultural production. The main goal of this project was to study the time-course pattern of cotton plant growth in response to [CO2] and temperature to investigate the hypothesis that whether response to elevated [CO2] would change at different temperatures. An experiment was conducted in the controlled-environment chambers of the Georgia Envirotron with two different day/night temperatures levels, e.g., 25/15 °C and 35/25 °C, and three CO2 concentrations, e.g., 400, 600 and 800 μmol l?1. The experimental design was completely randomized with four replicates (plastic containers) per treatment. Growth analysis was conducted at bi-weekly intervals during the growing season. In addition, leaf area, leaf dry mass, root dry mass, square dry mass, boll dry mass and total above dry mass per plant were also measured at each sampling. Plant traits, including plant height, number of leaves, number of squares and number of bolls were recorded weekly. The number of days to emergence, squaring, flowering and maturity were also observed. The results showed that by increasing [CO2] to 600 μmol l?1 total biomass increased at both temperature levels, but a further increase of [CO2] up to 800 μmol l?1 increased total biomass only at the temperature of 35/25 °C. Throughout the growing season, there was no significant effect of [CO2] levels on LAI. Increasing temperature from 25/15 °C to 35/25 °C had a positive impact on LAI across all CO2 levels (P < 0.05). Increasing CO2 from 400 to 600 μmol l?1 significantly increased the number of squares by 31.4%, but a further increase to 800 μmol l?1 caused a 6.6% decrease (non-significant) in the number of squares. The interactive effects of [CO2] and temperature indicated that at a higher temperature, CO2 would be more beneficial as we proceed towards the end of the growing season. However, further studies are needed to really understand the interaction between higher [CO2] and temperature levels and cultivar characteristics.  相似文献   

13.
Cannabinoid receptor type 1 (CB1) is mainly expressed in the brain, as well as being expressed in functional relevant concentrations in various peripheral tissues. 1-(4-Chlorophenyl)-3-(3-(6-(pyrrolidin-1-yl)pyridin-2-yl)phenyl)urea (PSNCBAM-1, 1) was developed as a potent allosteric antagonist for CB1 and its oral administration led to reductions in the appetite and body weight of rats. Several analogs of 1 (compounds 2 and 3) were recently identified through a series of structure-activity relationship studies. Herein, we report the synthesis of radiolabeled analogs of these compounds using [11C]COCl2 and an evaluation of their potential as PET ligands for CB1 imaging using in vitro and in vivo techniques. [11C]2 and [11C]3 were successfully synthesized in two steps using [11C]COCl2. The radiochemical yields of [11C]2 and [11C]3 were 17 ± 8% and 20 ± 9% (decay-corrected to the end of bombardment, based on [11C]CO2). The specific activities of [11C]2 and [11C]3 were 42 ± 36 and 37 ± 13 GBq/μmol, respectively. The results of an in vitro binding assay using brown adipose tissue (BAT) homogenate showed that the binding affinity of 2 for CB1 (KD = 15.3 µM) was much higher than that of 3 (KD = 26.0 µM). PET studies with [11C]2 showed a high uptake of radioactivity in BAT, which decreased in animals pretreated with AM281 (a selective antagonist for CB1). In conclusion, [11C]2 may be a useful PET ligand for imaging peripheral CB1 in BAT.  相似文献   

14.
Gram-negative pathogens secrete effector proteins into human cells to modulate normal cellular processes and establish a bacterial replication niche. Shigella and pathogenic Escherichia coli possess homologous effector kinases, OspG and NleH1/2, respectively. Upon translocation, OspG but not NleH binds to ubiquitin and a subset of E2 ~ Ub conjugates, which was shown to activate its kinase activity. Here we show that OspG, having a minimal kinase fold, acquired a novel mechanism of regulation of its activity. Binding of the E2 ~ Ub conjugate to OspG not only stimulates its kinase activity but also increases its optimal temperature for activity to match the human body temperature and stabilizes its labile C-terminal domain. The melting temperature (Tm) of OspG alone is only 31?°C, as compared to 41?°C to NleH1/2 homologs. In the presence of E2 ~ Ub, the Tm of OspG increases to ~ 42?°C, while Ub by itself increases the Tm to 39?°C. Moreover, OspG alone displays maximal activity at 26?°C, while in the presence of E2 ~ Ub, maximal activity occurs at ~ 42?°C. Using NMR and molecular dynamics calculations, we have identified the C-terminal lobe and, in particular, the C-terminal helix, as the key elements responsible for lower thermal stability of OspG as compared to homologous effector kinases.  相似文献   

15.
The responses of soil-atmosphere carbon (C) exchange fluxes to growing atmospheric nitrogen (N) deposition are controversial, leading to large uncertainty in the estimated C sink of global forest ecosystems experiencing substantial N inputs. However, it is challenging to quantify critical load of N input for the alteration of the soil C fluxes, and what factors controlled the changes in soil CO2 and CH4 fluxes under N enrichment. Nine levels of urea addition experiment (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha−1 yr−1) were conducted in the needle-broadleaved mixed forest in Changbai Mountain, Northeast China. Soil CO2 and CH4 fluxes were monitored weekly using the static chamber and gas chromatograph technique. Environmental variables (soil temperature and moisture in the 0–10 cm depth) and dissolved N (NH4+-N, NO3-N, total dissolved N (TDN), and dissolved organic N (DON)) in the organic layer and the 0–10 cm mineral soil layer were simultaneously measured. High rates of N addition (≥60 kg N ha−1 yr−1) significantly increased soil NO3-N contents in the organic layer and the mineral layer by 120%-180% and 56.4%-84.6%, respectively. However, N application did not lead to a significant accumulation of soil NH4+-N contents in the two soil layers except for a few treatments. N addition at a low rate of 10 kg N ha−1 yr−1 significantly stimulated, whereas high rate of N addition (140 kg N ha−1 yr−1) significantly inhibited soil CO2 emission and CH4 uptake. Significant negative relationships were observed between changes in soil CO2 emission and CH4 uptake and changes in soil NO3-N and moisture contents under N enrichment. These results suggest that soil nitrification and NO3-N accumulation could be important regulators of soil CO2 emission and CH4 uptake in the temperate needle-broadleaved mixed forest. The nonlinear responses to exogenous N inputs and the critical level of N in terms of soil C fluxes should be considered in the ecological process models and ecosystem management.  相似文献   

16.
The light-harvesting 1 reaction center (LH1-RC) complex from Thermochromatium (Tch.) tepidum exhibits unusual Qy absorption by LH1 bacteriochlorophyll-a (BChl-a) molecules at 915 nm, and the transition energy is finely modulated by the binding of metal cations to the LH1 polypeptides. Here, we demonstrate the metal-dependent interactions between BChl-a and the polypeptides within the intact LH1-RC complexes by near-infrared Raman spectroscopy. The wild-type LH1-RC (B915) exhibited Raman bands for the C3-acetyl and C13-keto CO stretching modes at 1637 and 1675 cm? 1, respectively. The corresponding bands appeared at 1643 and 1673 cm? 1 when Ca2 + was biosynthetically replaced with Sr2 + (B888) or at 1647 and 1669 cm? 1 in the mesophilic counterpart, Allochromatium vinosum. These results indicate the significant difference in the BChl–polypeptide interactions between B915 and B888 and between B915 and the mesophilic counterpart. The removal of the original metal cations from B915 and B888 resulted in marked band shifts of the C3-acetyl/C13-carbonyl νCO modes to ~ 1645/~ 1670 cm? 1, supporting a model in which the metal cations are involved in the fine-tuning of the hydrogen bonding between the BChl-a and LH1-polypeptides. Interestingly, the interaction modes were almost identical between the Ca2 +-depleted B915 and Sr2 +-depleted B888 and between B915 and Ca2 +-substituted B888, despite the significant differences in their LH1 Qy peak positions and the denaturing temperatures, as revealed by differential scanning calorimetry. These results suggest that not only the BChl–polypeptide interactions but some structural origin may be involved in the unusual Qy red-shift and the enhanced thermal stability of the LH1-RC complexes from Tch. tepidum.  相似文献   

17.
The effects of methionine sulfoximine and ammonium chloride on [14C] glutamate metabolism in excised leaves of Triticum aestivum were investigated. Glutamine was the principal product derived from [U14C]glutamate in the light and in the absence of inhibitor or NH4Cl. Other amino acids, organic acids, sugars, sugar phosphates, and CO2 became slightly radioactive. Ammonium chloride (10 mm) increased formation of [14C] glutamine, aspartate, citrate, and malate but decreased incorporation into 2-oxoglutarate, alanine, and 14CO2. Methionine sulfoximine (1 mm) suppressed glutamine synthesis, caused NH3 to accumulate, increased metabolism of the added radioactive glutamate, decreased tissue levels of glutamate, and decreased incorporation of radioactivity into other amino acids. Methionine sulfoximine also caused most of the 14C from [U-14C]glutamate to be incorporated into malate and succinate, whereas most of the 14C from [1-14C]glutamate was metabolized to CO2 and sugar phosphates. Thus, formation of radioactive organic acids in the presence of methionine sulfoximine does not take place indirectly through “dark” fixation of CO2 released by degradation of glutamate when ammonia assimilation is blocked. When illuminated leaves supplied with [U-14C] glutamate without inhibitor or NH4Cl were transferred to darkness, there was increased metabolism of the glutamate to glutamine, aspartate, succinate, malate, and 14CO2. Darkening had little effect on the labeling pattern in leaves treated with methionine sulfoximine.  相似文献   

18.
In recent decades, the frequency and intensity of harmful algal blooms (HABs), as well as a profusion of toxic phytoplankton species, have significantly increased in coastal regions of China. Researchers attribute this to environmental changes such as rising atmospheric CO2 levels. Such addition of carbon into the ocean ecosystem can lead to increased growth, enhanced metabolism, and altered toxicity of toxic phytoplankton communities resulting in serious human health concerns. In this study, the effects of elevated partial pressure of CO2 (pCO2) on the growth and toxicity of a strain of Alexandrium tamarense (ATDH) widespread in the East and South China Seas were investigated. Results of these studies showed a higher specific growth rate (0.31 ± 0.05 day−1) when exposed to 1000 μatm CO2, (experimental), with a corresponding density of (2.02 ± 0.19) × 107 cells L−1, that was significantly larger than cells under 395 μatm CO2(control). These data also revealed that elevated pCO2 primarily affected the photosynthetic properties of cells in the exponential growth phase. Interestingly, measurement of the total toxin content per cell was reduced by half under elevated CO2 conditions. The following individual toxins were measured in this study: C1, C2, GTX1, GTX2, GTX3, GTX4, GTX5, STX, dcGTX2, dcGTX3, and dcSTX. Cells grown in 1000 μatm CO2 showed an overall decrease in the cellular concentrations of C1, C2, GTX2, GTX3, GTX5, STX, dcGTX2, dcGTX3, and dcSTX, but an increase in GTX1 and GTX4. Total cellular toxicity per cell was measured revealing an increase of nearly 60% toxicity in the presence of elevated CO2 compared to controls. This unusual result was attributed to a significant increase in the cellular concentrations of the more toxic derivatives, GTX1 and GTX4.Taken together; these findings indicate that the A. tamarense strain ATDH isolated from the East China Sea significantly increased in growth and cellular toxicity under elevated pCO2 levels. These data may provide vital information regarding future HABs and the corresponding harmful effects as a result of increasing atmospheric CO2.  相似文献   

19.
The intrinsic and inducible o-diphenoloxidase (o-diPO) activity of Cancer pagurus hemocyanin (CpH) and Limulus polyphemus hemocyanin (LpH) were studied using catechol, l-Dopa and dopamine as substrates. The kinetic analysis shows that dopamine is a more specific substrate for CpH than catechol and l-Dopa (Km value of 0.01 mM for dopamine versus 0.67 mM for catechol, and 2.14 mM for l-Dopa), while kcat is highest for catechol (2.44 min? 1 versus 0.67 min? 1 for l-Dopa and 0.71 min? 1 for dopamine). On treatment with 4 mM sodium dodecyl sulfate (SDS) or by proteolysis the o-diPO activity of CpH increases about twofold. In contrast, native LpH shows no o-diPO activity, and exhibits only a slight activity after incubation with SDS. Neither CpH nor LpH show intrinsic mono-PO activity with l-tyrosine and tyramine as substrates. To explore the possible correlation between the degree of PO activity and protein stability of arthropod hemocyanins, the thermal stability of CpH and LpH was investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy. CpH is found to be less thermostable (Tm ~ 80 °C), suggesting that the dicopper active sites are more accessible, thereby allowing the hemocyanin to show PO activity in the native state. The LpH, on the other hand, is more thermostable (Tm ~ 92 °C), suggesting the existence of a correlation between the thermal stability and the intrinsic PO activity of arthropod hemocyanins.  相似文献   

20.
N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or cationic protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we observe the rich structural polymorphism of pH responsive complexes prepared due to DNA interaction with C12NO/dioleoylphosphatidylethanolamine (DOPE) vesicles and discuss it in view of utilizing the surfactant for the gene delivery vector of a pH sensitive system. In neutral solutions, the DNA uptake is low, and a lamellar Lα phase formed by C12NO/DOPE is prevailing in the complexes at 0.2  C12NO/DOPE < 0.6 mol/mol. A maximum of ~ 30% of the total DNA volume in the sample is bound in a condensed lamellar phase LαC at C12NO/DOPE = 1 mol/mol and pH 7.2. In acidic conditions, a condensed inverted hexagonal phase HIIC was observed at C12NO/DOPE = 0.2 mol/mol. Commensurate lattice parameters, aHC  dLC, were detected at 0.3  C12NO/DOPE  0.4 mol/mol and pH = 4.9–6.4 suggesting that LαC and HIIC phases were epitaxially related. While at the same composition but pH ~ 7, the mixture forms a cubic phase (Pn3m) when the complexes were heated to 80 °C and cooled down to 20 °C. Finally, a large portion of the surfactant (C12NO/DOPE > 0.5) stabilizes the LαC phase in C12NO/DOPE/DNA complexes and the distance between DNA strands (dDNA) is modulated by the pH value. Both the composition and pH affect the DNA binding in the complexes reaching up to ~ 95% of the DNA total amount at acidic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号