首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PTP1B is a protein tyrosine phosphatase that negatively regulates insulin sensitivity by dephosphorylating the insulin receptor. Akt is a ser/thr kinase effector of insulin signaling that phosphorylates substrates at the consensus motif RXRXXS/T. Interestingly, PTP1B contains this motif (RYRDVS(50)), and wild-type PTP1B (but not mutants with substitutions for Ser(50)) was significantly phosphorylated by Akt in vitro. To determine whether PTP1B is a substrate for Akt in intact cells, NIH-3T3(IR) cells transfected with either wild-type PTP1B or PTP1B-S50A were labeled with [(32)P]-orthophosphate. Insulin stimulation caused a significant increase in phosphorylation of wild-type PTP1B that could be blocked by pretreatment of cells with wortmannin or cotransfection of a dominant inhibitory Akt mutant. Similar results were observed with endogenous PTP1B in untransfected HepG2 cells. Cotransfection of constitutively active Akt caused robust phosphorylation of wild-type PTP1B both in the absence and presence of insulin. By contrast, PTP1B-S50A did not undergo phosphorylation in response to insulin. We tested the functional significance of phosphorylation at Ser(50) by evaluating insulin receptor autophosphorylation in transfected Cos-7 cells. Insulin treatment caused robust receptor autophosphorylation that could be substantially reduced by coexpression of wild-type PTP1B. Similar results were obtained with coexpression of PTP1B-S50A. However, under the same conditions, PTP1B-S50D had an impaired ability to dephosphorylate the insulin receptor. Moreover, cotransfection of constitutively active Akt significantly inhibited the ability of wild-type PTP1B, but not PTP1B-S50A, to dephosphorylate the insulin receptor. We conclude that PTP1B is a novel substrate for Akt and that phosphorylation of PTP1B by Akt at Ser(50) may negatively modulate its phosphatase activity creating a positive feedback mechanism for insulin signaling.  相似文献   

2.
Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1Ser307 phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1Ser307Ala mice and controls. Our results demonstrate that blockade of IRS1Ser307 phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance.  相似文献   

3.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

4.

Objective

Excess dietary lipids result in the accumulation of lipid metabolites including ceramides that can attenuate insulin signaling. There is evidence that a botanical extract of Urtica dioica L. (stinging nettle) improves insulin action, yet the precise mechanism(s) are not known. Hence, we examined the effects of Urtica dioica L. (UT) on adipocytes.

Research Design

We investigated the effects of an ethanolic extract of UT on free fatty acid (palmitic acid) induced inhibition of insulin-stimulated Akt serine phosphorylation and modulation of ceramidase expression in 3T3-L1 adipocytes. Adipocytes were exposed to excess FFAs in the presence or absence of UT. Effects on adiponectin expression, ceramidase expression, ceramidase activity, ceramide accumulation and insulin signaling were determined.

Results

As expected, FFAs reduced adiponectin expression and increased the expression of ceramidase enzymes but not their activity. FFA also induced the accumulation of ceramides and reduced insulin-stimulated phosphorylation of Akt in adipocytes. The effects of FFA were partially reversed by UT. UT enhanced adiponectin expression and ceramidase activity in the presence of excess FFAs. UT abated ceramide accumulation and increased insulin sensitivity via enhanced Akt phosphorylation. A siRNA knockdown of adiponectin expression prevented UT from exerting positive effects on ceramidase activity but not Akt phosphorylation.

Conclusions

In adipocytes, the ability of UT to antagonize the negative effects of FFA by modulating ceramidase activity and ceramide accumulation is dependent on the presence of adiponectin. However, the ability of UT to enhance Akt phosphorylation is independent of adiponectin expression. These studies demonstrate direct effects of UT on adipocytes and suggest this botanical extract is metabolically beneficial.  相似文献   

5.
The prothoracicotropic hormone (PTTH) stimulates ecdysteroidogenesis by prothoracic gland in larval insects. Previous studies showed that Ca2+, cAMP, extracellular signal-regulated kinase (ERK), and tyrosine kinase are involved in PTTH-stimulated ecdysteroidogenesis by the prothoracic glands of both Bombyx mori and Manduca sexta. In the present study, the involvement of phosphoinositide 3-kinase (PI3K)/Akt signaling in PTTH-stimulated ecdysteroidogenesis by B. mori prothoracic glands was further investigated. The results showed that PTTH-stimulated ecdysteroidogenesis was partially blocked by LY294002 and wortmannin, indicating that PI3K is involved in PTTH-stimulated ecdysteroidogenesis. Akt phosphorylation in the prothoracic glands appeared to be moderately stimulated by PTTH in vitro. PTTH-stimulated Akt phosphorylation was inhibited by LY294002. An in vivo PTTH injection into day 6 last instar larvae also increased Akt phosphorylation of the prothoracic glands. In addition, PTTH-stimulated ERK phosphorylation of the prothoracic glands was not inhibited by either LY294002 or wortmannin, indicating that PI3K is not involved in PTTH-stimulated ERK signaling. A23187 and thapsigargin, which stimulated B. mori prothoracic gland ERK phosphorylation and ecdysteroidogenesis, could not activate Akt phosphorylation. PTTH-stimulated ecdysteroidogenesis was not further activated by insulin, indicating the absence of an additive action of insulin and PTTH on the prothoracic glands. The present study, together with the previous demonstration that insulin stimulates B. mori ecdysteroidogenesis through PI3K/Akt signaling, suggests that crosstalk exists in B. mori prothoracic glands between insulin and PTTH signaling, which may play a critical role in precisely regulated ecdysteroidogenesis during development.  相似文献   

6.
Myxobacteria are well-known for their complex life cycle, including the formation of spore-filled fruiting bodies. The model organism Myxococcus xanthus exhibits a highly complex composition of neutral and phospholipids, including triacylglycerols (TAGs), diacylglycerols (DAGs), phosphatidylethanolamines (PEs), phosphatidylglycerols (PGs), cardiolipins (CLs), and sphingolipids, including ceramides (Cers) and ceramide phosphoinositols (Cer-PIs). In addition, ether lipids have been shown to be involved in development and signaling. In this work, we describe the lipid profile of M. xanthus during its entire life cycle, including spore germination. PEs, representing one of the major components of the bacterial membrane, decreased by about 85% during development from vegetative rods to round myxospores, while TAGs first accumulated up to 2-fold before they declined 48 h after the induction of sporulation. Presumably, membrane lipids are incorporated into TAG-containing lipid bodies, serving as an intermediary energy source for myxospore formation. The ceramides Cer(d-19:0/iso-17:0) and Cer(d-19:0/16:0) accumulated 6-fold and 3-fold, respectively, after 24 h of development, identifying them to be novel putative biomarkers for M. xanthus sporulation. The most abundant ether lipid, 1-iso-15:0-alkyl-2,3-di-iso-15:0-acyl glycerol (TG1), exhibited a lipid profile different from that of all TAGs during sporulation, reinforcing its signaling character. The absence of all these lipid profile changes in mutants during development supports the importance of lipids in myxobacterial development. During germination of myxospores, only the de novo biosynthesis of new cell membrane fatty acids was observed. The unexpected accumulation of TAGs also during germination might indicate a function of TAGs as intermediary storage lipids during this part of the life cycle as well.  相似文献   

7.
The insulin receptor substrate (IRS) proteins are key mediators of insulin and insulinlike growth factor 1 (IGF-1) signaling. Protein tyrosine phosphatase (PTP)-1B dephosphorylates and inactivates both insulin and IGF-1 receptors. IRS2-deficient mice present altered hepatic insulin signaling and β-cell failure and develop type 2–like diabetes. In addition, IRS2 deficiency leads to developmental defects in the nervous system. IGF1 gene mutations cause syndromic sensorineural hearing loss in humans and mice. However, the involvement of IRS2 and PTP1B, two IGF-1 downstream signaling mediators, in hearing onset and loss has not been studied. Our objective was to study the hearing function and cochlear morphology of Irs2-null mice and the impact of PTP1B deficiency. We have studied the auditory brainstem responses and the cochlear morphology of systemic Irs2−/−Ptpn1+/+, Irs2+/+Ptpn1−/−and Irs2−/−Ptpn1−/− mice at different postnatal ages. The results indicated that Irs2−/−Ptpn1+/+ mice present a profound congenital sensorineural deafness before the onset of diabetes and altered cochlear morphology with hypoinnervation of the cochlear ganglion and aberrant stria vascularis, compared with wild-type mice. Simultaneous PTP1B deficiency in Irs2−/−Ptpn1−/− mice delays the onset of deafness. We show for the first time that IRS2 is essential for hearing and that PTP1B inhibition may be useful for treating deafness associated with hyperglycemia and type 2 diabetes.  相似文献   

8.
Protein-tyrosine phosphatase-1B (PTP1B) has been implicated as a negative regulator of insulin signaling. PTP1B dephosphorylates the insulin receptor and insulin receptor substrates (IRS-1/2), inhibiting the insulin-signaling pathway. PTP1B has been reported to be elevated in diabetes and insulin-resistant states. Conversely, PTP1B null mice have increased insulin sensitivity. To further investigate the effect of PTP1B reduction on insulin signaling, FAO rat hepatoma cells were transfected, by electroporation, with a specific PTP1B antisense oligonucleotide (ASO), or a control oligonucleotide. The PTP1B ASO caused a 50-70% reduction in PTP1B protein expression as measured by Western blot analysis. Upon insulin stimulation, an increase in the phosphorylation of the insulin receptor and insulin receptor substrates was observed, without any change in protein expression levels. Reduction of PTP1B expression in FAO cells also caused an increase in insulin-stimulated phosphorylation of PKB and GSK3, without any change in protein expression. These results demonstrate that reduction of PTP1B can modulate key insulin signaling events downstream of the insulin receptor.  相似文献   

9.
Protein-tyrosine phosphatase 1B (PTP1B) has been implicated in the negative regulation of insulin signaling. We previously demonstrated that light-induced tyrosine phosphorylation of the retinal insulin receptor (IR) results in the activation of phosphoinositide 3-kinase/Akt survival pathway in rod photoreceptor cells. The molecular mechanism behind light-induced activation of IR is not known. We investigated the in vivo mechanism of IR activation and found that PTP1B activity in dark-adapted retinas was significantly higher than in light-adapted retinas. We made a novel finding in this study that the light-dependent regulation of PTP1B activity is signaled through photobleaching of rhodopsin. Conditional deletion of PTP1B in rod photoreceptors by the Cre-loxP system resulted in enhanced IR signaling. Further PTP1B activity negatively regulated the neuroprotective survival signaling in the retina. One of the challenging questions in the retina research is how mutations in human rhodopsin gene slowly disable and eventually disrupt photoreceptor functions. Our studies suggest that a defect in the photobleaching of rhodopsin and mutation in rhodopsin gene enhances the activity of PTP1B, and this activated activity could down-regulate the IR survival signaling. Our studies suggest that PTP1B antagonists could be potential therapeutic agents to treat stress-induced photoreceptor degenerations and provide further evidence that rhodopsin photoexcitation may trigger signaling events alternative to the classic phototransduction.  相似文献   

10.
Triacylglycerol accumulation in insulin target tissues is associated with insulin resistance. Paradoxically, mice with global targeted deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme in triacylglycerol hydrolysis, display improved glucose tolerance and insulin sensitivity despite triacylglycerol accumulation in multiple tissues. To determine the molecular mechanisms for this phenotype, ATGL-deficient (ATGL−/−) and wild-type mice were injected with saline or insulin (10 units/kg, intraperitoneally), and then phosphorylation and activities of key insulin-signaling proteins were determined in insulin target tissues (liver, adipose tissue, and muscle). Insulin signaling and/or glucose transport was also evaluated in isolated adipocytes and skeletal muscle ex vivo. In ATGL−/− mice, insulin-stimulated phosphatidylinositol 3-kinase and Akt activities as well as phosphorylation of critical residues of IRS1 (Tyr(P)-612) and Akt (Ser(P)-473) were increased in skeletal muscle in vivo. Insulin-stimulated phosphatidylinositol 3-kinase activity and total insulin receptor and insulin receptor substrate 1, but not other parameters, were also increased in white adipose tissue in vivo. In contrast, in vivo measures of insulin signaling were decreased in brown adipose tissue and liver. Interestingly, the enhanced components of insulin signaling identified in skeletal muscle and white adipose tissue in vivo and their expected downstream effects on glucose transport were not present ex vivo. ATGL deficiency altered intramyocellular lipids as well as serum factors known to influence insulin sensitivity. Thus, skeletal muscle, rather than other tissues, primarily contributes to enhanced insulin sensitivity in ATGL−/− mice in vivo despite triacylglycerol accumulation, and both local and systemic factors contribute to tissue-specific effects of global ATGL deficiency on insulin action.Triacylglycerols (TAGs)4 are the predominant form of energy storage in animals. The ability to store and release this energy in response to variable energy availability requires a carefully regulated balance between TAG synthesis and hydrolysis. In the setting of chronic energy excess, however, TAGs and other lipid metabolites accumulate in adipose tissue as well as in metabolically relevant non-adipose tissues where they have been proposed to contribute to cellular dysfunction via a process known as lipotoxicity (13). Indeed, intracellular TAG accumulation has been repeatedly associated with metabolic dysfunction, a relationship that is particularly strong for insulin resistance (13). Despite this strong association, however, intracellular TAG accumulation is not always associated with insulin resistance (4) and may even be associated with insulin sensitivity, as is the case with highly trained endurance athletes (the so-called “athlete paradox”) (5). Thus, the contribution of intracellular TAGs and TAG metabolism per se to lipotoxicity remains controversial. What is clear is that lipid-induced insulin resistance is a major risk factor for morbidity and mortality from a variety of causes, including overt diabetes mellitus, nonalcoholic fatty liver disease, and cardiovascular disease. Hence, understanding the mechanisms by which dysregulated TAG metabolism contributes to steatosis, lipotoxicity, and insulin resistance is essential to understanding and treating these increasingly prevalent disorders.Although no mechanistic data have been identified directly linking intracellular TAGs per se to insulin resistance, lipotoxicity may occur when the capacity of the lipid droplets to effectively store TAGs is exceeded. Several other lipid metabolites that are products of TAG hydrolysis (i.e. diacylglyerols (DAGs), fatty acids (FAs), fatty acyl-CoAs (FA-CoAs), and ceramides) have been shown to directly or indirectly interfere with insulin signaling and glucose transport via a variety of mechanisms (69). Under normal physiological circumstances, insulin binds to the insulin receptor (IR), thereby triggering its intrinsic protein-tyrosine kinase activity. The subsequent autophosphorylation of several IR tyrosine residues promotes the recruitment and tyrosine phosphorylation of IR substrates (IRSs) followed by activation of phosphatidylinositol 3-kinase (PI3K) and Akt, which in turn promote the pleiotrophic downstream effects of insulin. The above lipid metabolites have been shown to increase serine/threonine phosphorylation and decrease tyrosine phosphorylation of IRS1, decrease serine/threonine phosphorylation of Akt, decrease IRS1-associated PI3K activity and Akt activity, and decrease Glut4 translocation (69). Possible mechanisms by which these lipid metabolites may influence glucose homeostasis and insulin action include competition for substrate oxidation, interference with cellular energy sensing, regulation of gene expression, promotion of oxidative stress and mitochondrial dysfunction, and activation of inflammatory and apoptotic pathways (69). However, most studies evaluating the role of lipotoxicity in insulin resistance have focused on cellular lipid uptake or oxidation, both of which produce unidirectional changes in intracellular TAGs and other intracellular lipid metabolites and hence do not adequately address the role of intracellular TAGs and TAG metabolism per se to this process.Understanding the role of TAG metabolism in lipotoxicity and insulin resistance has been further complicated by the fact that the rate-limiting enzyme for TAG hydrolysis, adipose triglyceride lipase (ATGL), has only recently been identified (1012). ATGL has been most extensively studied in adipose tissue where it mediates the hydrolysis of long chain fatty acyl TAGs (10). ATGL is also expressed in other tissues, including liver, muscle, and pancreas (13), where its contribution to tissue-specific and systemic metabolism is less well understood. Mice with global targeted deletion of ATGL (ATGL−/− mice) have severe defects in TAG hydrolysis, leading to TAG accumulation in virtually all tissues (14). Surprisingly, despite increased adiposity and “ectopic” TAG accumulation, which are characteristically associated with insulin resistance, ATGL−/− mice paradoxically exhibit enhanced glucose tolerance and insulin sensitivity (14). This finding has largely been attributed to the effect of reduced systemic FA delivery on energy substrate availability (14). However, the contribution of altered tissue-specific insulin action to this phenotype has not been evaluated.ATGL−/− mice represent a unique model for examining the contribution of intracellular TAG accumulation to glucose homeostasis and insulin action because intracellular TAG accumulation is dissociated from systemic FA delivery, and presumably also from the production/accumulation of other intracellular lipid metabolites. In addition, ATGL−/− mice differ from the other models in which increased adiposity is paradoxically associated with insulin sensitivity in that enhanced expansion of adipose tissue mass and reduced systemic FA delivery do not protect against ectopic lipid deposition in ATGL−/− mice (15, 16). The aims of this study were to evaluate the mechanisms by which impaired TAG hydrolysis and intracellular TAG accumulation because of global ATGL deficiency promote whole-body glucose tolerance and insulin sensitivity and to define the contribution of tissue-specific changes in insulin action to this phenotype. Here we demonstrate that global ATGL deficiency in mice not only reduces energy substrate availability but also produces tissue-specific changes in insulin action.  相似文献   

11.
Agelasine G (1), a known bromine-containing diterpene alkaloid, was isolated as a new type of protein tyrosine phosphatase (PTP) 1B inhibitor together with ageline B (2), an inactive debromo-derivative of 1, from the marine sponge Agelas nakamurai collected at Iriomote Island in Okinawa, Japan. Further biological evaluations revealed that compound 1 exhibited selective inhibitory activity against PTP1B over T-cell PTP and CD45 phosphatase. Compound 1 also enhanced the insulin-stimulated phosphorylation levels of Akt in Huh-7 cells more strongly than compound 2. The results obtained in this study suggest that compound 1 activates the insulin signaling pathway by inhibiting PTP1B activity.  相似文献   

12.
Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires 相似文献   

13.
Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr105 phosphorylation in cultured adipocytes and in vivo. Substrate trapping and mutagenesis studies identify PKM2 Tyr-105 and Tyr-148 as key sites that mediate PTP1B-PKM2 interaction. In addition, in vitro analyses illustrate a direct effect of Tyr-105 phosphorylation on PKM2 activity in adipocytes. Importantly, PTP1B pharmacological inhibition increased PKM2 Tyr-105 phosphorylation and decreased PKM2 activity. Moreover, PKM2 Tyr-105 phosphorylation is regulated nutritionally, decreasing in adipose tissue depots after high-fat feeding. Further, decreased PKM2 Tyr-105 phosphorylation correlates with the development of glucose intolerance and insulin resistance in rodents, non-human primates, and humans. Together, these findings identify PKM2 as a novel substrate of PTP1B and provide new insights into the regulation of adipose PKM2 activity.  相似文献   

14.
BackgroundElevated homocysteine is epidemiologically related to insulin resistance. Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling. However, the effect of homocysteine on PTP1B remains unclear.MethodsS-homocysteinylated PTP1B was identified by LC-ESI-MS/MS. The ability of thioredoxin system to recover active PTP1B from S-homocysteinylated PTP1B was confirmed by RNA interference. To address the mechanism for homocysteine to affect PTP1B activity, we performed 5-IAF insertion, activity assays, Western blotting, co-immunoprecipitation and glucose uptake experiments.ResultsThe thiol-containing form of homocysteine (HcySH) suppressed phosphorylation of insulin receptor-β subunit, but enhanced PTP1B activity. This phenomenon was partially related to the fact that HcySH promoted PTP1B expression. Although the disulfide-bonded form of homocysteine (HSSH) modified PTP1B to form an inactive S-homocysteinylated PTP1B, HcySH-induced increase in the activities of cellular thioredoxin and thioredoxin reductase, components of thioredoxin system, could recover active PTP1B from S-homocysteinylated PTP1B. Thioredoxin system transferred electrons from NADPH to S-homocysteinylated PTP1B, regenerating active PTP1B in vitro and in hepatocytes. The actions of HcySH were also related with decrease in hepatic glucose uptake.ConclusionsThe effect of HcySH/HSSH on PTP1B activity depends, at least partially, on the ratio of active PTP1B and S-homocysteinylated PTP1B. High HcySH-induced an increase in thioredoxin system activity is beneficial to de-S-homocysteinylation and is good for PTP1B activity.General significanceOur data provide a novel insight into post-translational regulation of PTP1B, and expand the biological functions of thioredoxin system.  相似文献   

15.
Protein tyrosine phosphatase (PTP) 1B negatively regulates the insulin and leptin signaling pathways, and, thus, the clinical application of PTP1B inhibitors to the prevention and treatment of type 2 diabetes and obesity is expected. During our studies on PTP1B inhibitors, two furanosesterterpenes and a C21 furanoterpene were obtained as new types of PTP1B inhibitors from two Indonesian marine sponges. (7E, 12E, 20Z, 18S)-Variabilin (1) and (12E, 20Z, 18S)-8-hydroxyvariabilin (2) from Ircinia sp. and furospongin-1 (3) from Spongia sp. inhibited PTP1B activity with IC50 values of 1.5, 7.1, and 9.9 μM, respectively. The inhibitory activity of compound 1 against T-cell PTP (TCPTP) was approximately 2-fold that against PTP1B, whereas the vaccinia H-1-related phosphatase (VHR) inhibitory effects of 1 were 4-fold weaker than that of its PTP1B inhibitory activity. Compounds 13 at 50 μM did not show cytotoxicity against two human cancer cell lines, hepatoma Huh-7 and bladder carcinoma EJ-1. Compound 1 did not enhance the phosphorylation level of Akt, a key downstream effector of the cascade, in Huh-7 cells.  相似文献   

16.
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin and tyrosine kinase growth factor signaling. We have recently demonstrated that PTP1B deficiency increases GLUT2/insulin receptor (IR) A complexes and glucose uptake in suckling, but not adult, primary hepatocytes. Herein we have investigated intrahepatic glucose utilization in 3–5 days old wild‐type and PTP1B?/? mice. PTP1B deficiency decreased glycogen, lactate, and pyruvate content in the livers from suckling mice. Conversely, the activity of glucose 6‐phosphate dehydrogenase (G6PD), the rate limiting enzyme of the pentose phosphate cycle (PPC) which provides substrates for DNA synthesis, was enhanced in the liver of PTP1B?/? animals. Liver weight, liver‐to‐body mass ratio, DNA content, and PCNA expression were increased in PTP1B?/? suckling mice compared to the wild‐type controls. At the molecular level, STAT 5B phosphorylation, IGF‐I mRNA, and protein levels as well as IGF‐IR tyrosine phosphorylation were increased in the livers of PTP1B‐deficient neonates. Unexpectedly, hepatic and serum triglycerides (TG) were increased by PTP1B deficiency, although the expression of lipogenic enzymes remained as in the wild‐type controls. However, the analysis of milk composition revealed higher TG content in lactating females lacking PTP1B. The effects of PTP1B deficiency on G6PD activity, STAT 5B/IGF‐I/IGF‐IR axis, PCNA expression and liver growth during suckling were maintained by transferring PTP1B?/? embryos (PTP1B?/?T) to a wild‐type female. Conversely, PTP1B?/?T mice did not show hepatic fat accumulation. In conclusion, the present study suggests that PTP1B plays a unique role in the control of the physiological liver development after birth. J. Cell. Physiol. 225: 214–222, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
In the present study, we examined the effects of free fatty acids (FFAs) on insulin sensitivity and signaling cascades in the C2C12 skeletal muscle cell culture system. Our data clearly manifested that the inhibitory effects of PKC on insulin signaling may at least in part be explained by the serine/threonine phosphorylation of IRS-1. Both oleate and palmitate treatment were able to increase the Serine307 phosphorylation of IRS-1. IRS-1 Serine307 phosphorylation is inducible which causes the inhibition of IRS-1 tyrosine phosphorylation by either IκB-kinase (IKK) or c-jun N-terminal kinase (JNK) as seen in our proteomic kinases screen. Furthermore, our proteomic data have also manifested that the two FFAs activate the IKKα/β, the stress kinases S6 kinase p70 (p70SK), stress-activated protein kinase (SAPK), JNK, as well as p38 MAP kinase (p38MAPK). On the other hand, the antioxidant, Taurine at 10 mM concentrations was capable of reversing the oleate-induced insulin resistance in myocytes as manifested from the glucose uptake data. Our current data point out the importance of FFA-induced insulin resistance via multiple signaling mechanisms.  相似文献   

18.

Background and Aims

Protein tyrosine phosphatase 1B (PTP1B) is a novel therapeutic target for type-2 diabetes, which negatively regulates the insulin signaling transduction. Bis (2, 3-dibromo-4, 5-dihydroxybenzyl) ether (BDDE), a novel bromophenol isolated from the Red Alga, is a novel PTP1B inhibitor. But the anti-diabetic effects are not clear. In the present study, we evaluated the in vitro and in vivo antidiabetic effects of BDDE.

Methods

The insulin-resistant HepG2 cells were used to evaluate the in vitro antidiabetic effects of BDDE. MTT assay was used to determine the safety concentrations in HepG2 cells. Glucose assay kit was used to check glucose uptake after treated with BDDE. Western blotting assay was used to explore the potent mechanisms. The db/db mice were used to evaluate the in vivo antidiabetic effects of BDDE. Body weight, blood glucose, Glycated hemoglobin (HbA1c), lipid profile, and insulin level were checked at the respective time points. Gastrocnemii were dissected and used to analyze the PTP1B and insulin receptor β (IRβ) expression.

Results

BDDE increased the insulin-resisted glucose uptake in HepG2 cells. BDDE also decreased the expression of PTP1B and activated the substrates and downstream signals in insulin signal pathway, such as IRβ, insulin receptor substrate-1/2 (IRS1/2), phosphoinositide 3-kinase (PI3K), and protein kinase B (PKB/Akt). In the db/db mice model, BDDE significantly decreased the blood glucose, HbA1c and triglyceride (TG) levels. BDDE also decreased the expression of PTP1B and activated the phosphorylation of IRβ in gastrocnemii. Moreover, BDDE at high doses downregulated the body weight without affecting food and water intake.

Conclusion

Our results suggest that BDDE as a new PTP1B inhibitor improves glucose metabolism by stimulating the insulin signaling and could be used in the treatment of type-2 diabetes mellitus.  相似文献   

19.
20.
L-isoaspartyl (D-aspartyl) O-methyltransferase deficient mice (Pcmt1−/−) accumulate isomerized aspartyl residues in intracellular proteins until their death due to seizures at approximately 45 days. Previous studies have shown that these mice have constitutively activated insulin signaling in their brains, and that these brains are 20–30% larger than those from age-matched wild-type animals. To determine whether insulin pathway activation and brain enlargement is responsible for the fatal seizures, we administered wortmannin, an inhibitor of the phosphoinositide 3-kinase that catalyzes an early step in the insulin pathway. Oral wortmannin reduced the average brain size in the Pcmt1−/− animals to within 6% of the wild-type DMSO administered controls, and nearly doubled the lifespan of Pcmt1−/− at 60% survival of the original population. Immunoblotting revealed significant decreases in phosphorylation of Akt, PDK1, and mTOR in Pcmt1−/− mice and Akt and PDK1 in wild-type animals upon treatment with wortmannin. These data suggest activation of the insulin pathway and its resulting brain enlargement contributes to the early death of Pcmt1−/− mice, but is not solely responsible for the early death observed in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号