首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the sweet ketohexose L-sorbose causes overt hemolysis in dogs but not in man, we examined the possibility that L-sorbose induces a "prehemolytic state" of human red cells, manifesting itself as impairment of rheological red cell properties. After 2 hours incubation at 37 degrees C relative viscosity of red cell suspensions measured by radial spreading in filter paper and packing ability of red cells were normal. Incubation for 24 and 48 hours of red cells in media containing L-sorbose, glucose or no sugar showed that relative viscosity was best maintained in glucose. Relative viscosity and packing ability of red cells in L-sorbose containing suspensions decreased less than in suspensions without sugar. This difference was independent of the glucose metabolism, red cell ATP, osmolality and pH of the suspending media, but appeared to be related to different degrees of spheroechinocytic red cell shape transformation observed in different suspending media. It is possible that L-sorbose has some antiechinocytic properties and/or that it induces an alteration of red cell membrane flexibility. There is no indication of an L-sorbose induced "prehemolytic state" in human red cells.  相似文献   

2.
Fraser DM  Lindahl PA 《Biochemistry》1999,38(48):15706-15711
When samples of the enzyme in the C(red1) state were reduced with Ti(3+) citrate, the C-cluster stabilized in an EPR-silent state. Subsequent treatment with CO or dithionite yielded C(red2). The EPR-silent state formed within 1 min of adding Ti(3+) citrate, while C(red2) formed after 60 min. Ti(3+) citrate appeared to slow the rate by which C(red2) formed from C(red1) and stabilize the C-cluster in the previously proposed C(int) state. This is the first strong evidence for C(int), and it supports the catalytic mechanism that required its existence. This mechanism is analogous to those used by flavins and hydrogenases to convert between n = 2 and n = 1 processes. Ti(3+) citrate had a different effect on enzyme in a CO(2) atmosphere; it shifted reduction potentials of metal centers (relative to those obtained using CO) and did not stabilize C(int). Different redox behavior was also observed when methyl viologen and benzyl viologen were used as reductants. This variability was exploited to prepare enzyme samples in which EPR from C(red2) was present without interfering signals from B(red). The saturation properties of B(red) depended upon the redox state of the enzyme. Three saturation "modes", called Sat1-Sat3, were observed. Sat1 was characterized by a sharp g = 1.94 resonance and low-intensity g = 2. 04 and 1.90 resonances, and was observed in samples poised at slightly negative potentials. Sat2 was characterized by weak intensity from all three resonances, and was strictly associated with intermediate redox states and the presence of CO(2). Sat3 was characterized by strong broad resonances with normalized intensities essentially unchanged relative to nonsaturating conditions, and was observed at the most negative potentials. Each mode probably reflects different spatial relationships among magnetic components in the enzyme.  相似文献   

3.
Gordon-Mills  Elizabeth  Tate  Max  Hounslow  Andrea 《Hydrobiologia》1990,204(1):629-636
Both solid state (CP-MAS) and gel state (using standard solution state conditions) 13C NMR spectroscopy have been used to characterize a range of red algae that produce either agar or carrageenan. These techniques allow rapid determination of phycocolloid type within the algal tissue before extensive and time-consuming extractions and fractionations are carried out.The gel state technique can be used on living or dried material. Gel state spectra give high resolution and, because of the expectation that they will be correlated with the extractable phycocolloid, provide promise of a powerful technique for screening potentially useful red algae.  相似文献   

4.
The specific heat of the rat red cell, kept in cold sodium citrate, changes in the neighborhood of 6°C., the temperature near which the cell passes from its paracrystalline state to a state of greater disorder. The change in the specific heat is from 0.74 with a standard deviation of ±0.022 (paracrystalline state) to 0.87 with a standard deviation of ±0.021 (normal state). Although it has been looked for, no evidence of a change in specific heat has been found, between 1°C. and 15°C., in the case of the human red cell or of the fresh rat red cell in saline or plasma.  相似文献   

5.
Psakis G  Mailliet J  Lang C  Teufel L  Essen LO  Hughes J 《Biochemistry》2011,50(28):6178-6188
Cyanobacterial phytochrome 1 (Cph1) is a red/far-red light regulated histidine kinase, which together with its response regulator (Rcp1) forms a two-component light signaling system in Synechocystis 6803. In the present study we followed the in vitro autophosphorylation of Cph1 and the subsequent phosphotransfer to Rcp1 in different ionic milieus and following different light treatments. Both processes were red/far-red reversible with activity manifested in the Pr ground state (in darkness or after far-red irradiation) and with strongest activities being exhibited in the presence of Mn(2+). In vivo and in vitro assembled holoproteins in the Pr state displayed at least 4-fold higher efficiencies (k(cat)/K(m)) for autophosphorylation and phosphotransfer than the apoprotein or the holoprotein at photoequilibrium in red light. The reduced activities observed following red light treatments were consistent with the Pfr state being enzymatically inactive. Thus, both the rate of kinase autophosphorylation and the rate of phosphotransfer regulate the phosphorylation state of the response regulator, consistent with the rotary switch model regulating accessibility of the histidine target.  相似文献   

6.
Slr1694 is a BLUF (sensor of blue light using flavin adenine dinucleotide) protein and a putative photoreceptor in the cyanobacterium Synechocystis sp. PCC6803. Illumination of Slr1694 induced a signaling light state concurrent with a red shift in the UV-visible absorption of flavin, and formation of the bands from flavin and apo-protein in the light-minus-dark Fourier transform infrared (FTIR) difference spectrum. Replacement of Tyr8 with phenylalanine abolished these changes. The light state relaxed to the ground dark state, during which the FTIR bands decayed monophasically. These bands were classifiable into three groups according to their decay rates. The C4=O stretching bands of a flavin isoalloxazine ring had the highest decay rate, which corresponded to that of the absorption red shift. The result indicated that the hydrogen bonding at C4=O is responsible for the UV-visible red shift, consistent with the results of density functional calculation. All FTIR bands and the red shift decayed at the same slower rate in deuterated Slr1694. These results indicated that the dark relaxation from the light state is limited by proton transfer. In contrast, a constrained light state formed under dehydrated conditions decayed much more slowly with no deuteration effects. A photocycle mechanism involving the proton transfer was proposed.  相似文献   

7.
Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane from methyl-coenzyme M and coenzyme B in methanogenic archaea. The enzyme has two structurally interlinked active sites embedded in an α2β2γ2 subunit structure. Each active site has the nickel porphyrinoid F430 as a prosthetic group. In the active state, F430 contains the transition metal in the Ni(I) oxidation state. The active enzyme exhibits an axial Ni(I)-based continuous wave (CW) electron paramagnetic resonance (EPR) signal, called red1a in the absence of substrates or red1c in the presence of coenzyme M. Addition of coenzyme B to the MCR-red1 state can partially and reversibly convert it into the MCR-red2 form, which shows a rhombic Ni(I)-based EPR signal (at X-band microwave frequencies of approximately 9.4 GHz). In this report we present evidence from high-field/high-frequency CW EPR spectroscopy (W-band, microwave frequency of approximately 94 GHz) that the red2 state consists of two substates that could not be resolved by EPR spectroscopy at X-band frequencies. At W-band it becomes apparent that upon addition of coenzyme B to MCR in the red1c state, two red2 EPR signals are induced, not one as was previously believed. The first signal is the well-characterized (ortho)rhombic EPR signal, thus far called red2, while the second previously unidentified signal is axial. We have named the two substates MCR-red2r and MCR-red2a after their rhombic and axial signals, respectively. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Two cytochalasin B-binding states of the human red blood cell facilitative glucose transporter GLUT1 were studied, one exhibiting one cytochalasin B-binding site on every second GLUT1 monomer (state 1) and the other showing one site per monomer (state 2). Quantitative affinity chromatography of cytochalasin B was performed on (a) biotinylated red blood cells, (b) cytoskeleton-depleted red blood cell membrane vesicles, and (c) GLUT1 proteoliposomes. The cells were adsorbed on streptavidin-derivatized gel beads, and the vesicles and proteoliposomes entrapped in dextran-grafted agarose gel beads. Cytochalasin B binding to free vesicles and proteoliposomes was analyzed by Hummel and Dreyer size-exclusion chromatography and ultracentrifugation. Analysis of the biotinylated cells indicated an equilibrium between the two GLUT1 states. GLUT1 in free membrane vesicles attained state 2, but was converted into state 1 on entrapment of the vesicles. Purification of GLUT1 in the presence of non-ionic detergent followed by reconstitution produced GLUT1 in state 1. This state was maintained after entrapment of the proteoliposomes. Finally, GLUT1 showed slightly higher affinity for cytochalasin B in state 1 than in state 2. In summary, the cytochalasin B-binding state of GLUT1 seemed to be affected by (a) biotinylation of the cell surface, (b) removal of the cytoskeleton at high pH and low ionic strength, (c) interaction between the dextran-grafted agarose gel matrix and the membrane vesicles, and (d) reconstitution to form proteoliposomes.  相似文献   

9.
10.
Structural arrangement of pigment molecules of Photosystem I of photosynthetic cyanobacterium Synechococcus elongatus is used for theoretical modeling of the excitation energy spectrum. It is demonstrated that a straightforward application of the exciton theory with the assumption of the same molecular transition energy does not describe the red side of the absorption spectrum. Since the inhomogeneity in the molecular transition energies caused by a dispersive interaction with the molecular surrounding cannot be identified directly from the structural model, the evolutionary search procedure is used for fitting the low temperature absorption and circular dichroism spectra. As a result, one dimer, three trimers and one tetramer of chlorophyll molecules responsible for the red side of the absorption spectrum with their assignment to the spectroscopically established three bands at 708, 714 and 719 nm are determined. All of them are found to be situated not in the very close vicinity of the reaction center but are encircling it almost at the same distance. In order to explain the unusual broadening on the red side of the spectrum the exciton state mixing with the charge transfer (CT) states is considered. It is shown that two effects can be distinguished as caused by mixing of those states: (i) the oscillator strength borrowing by the CT state from the exciton transition and (ii) the borrowing of the high density of the CT state by the exciton state. The intermolecular vibrations between two counter-charged molecules determine the high density in the CT state. From the broad red absorption wing it is concluded that the CT state should be the lowest state in the complexes under consideration. Such mixing effect enables resolving the diversity in the molecular transition energies as determined by different theoretical approaches.  相似文献   

11.
In visual pigments, opsin proteins regulate the spectral absorption of a retinal chromophore by mechanisms that change the energy level of the excited electronic state relative to the ground state. We have studied these mechanisms by using photocurrent recording to measure the spectral sensitivities of individual red rods and red (long-wavelength-sensitive) and blue (short-wavelength-sensitive) cones of salamander before and after replacing the native 3-dehydro 11-cis retinal chromophore with retinal analogs: 11-cis retinal, 3-dehydro 9-cis retinal, 9-cis retinal, and 5,6-dihydro 9-cis retinal. The protonated Schiff's bases of analogs with unsaturated bonds in the ring had broader spectra than the same chromophores bound to opsins. Saturation of the bonds in the ring reduced the spectral bandwidths of the protonated Schiff's bases and the opsin-bound chromophores and made them similar to each other. This indicates that torsion of the ring produces spectral broadening and that torsion is limited by opsin. Saturating the 5,6 double bond in retinal reduced the perturbation of the chromophore by opsin in red and in blue cones but not in red rods. Thus an interaction between opsin and the chromophoric ring shifts the spectral maxima of the red and blue cone pigments, but not that of the red rod pigment.  相似文献   

12.
Previous studies demonstrated that blue, near far‐red and a mixture of red and far‐red light stimulate, while red light inhibits coiling and prehaustoria development in young excised de‐etiolated dodder seedlings. In this study, evidence was obtained for the involvement of cryptochromes in the mediation of coiling and prehaustoria development in response to blue light. The results indicated that coiling and prehaustoria are affected by the addition of red or far‐red light and therefore are dependent on the state of phytochromes. Results also suggest the occurrence of a synergistic interaction between phytochromes (Pr) and cryptochromes and an antagonistic interaction between phytochromes (Pfr) and cryptochromes in mediating coiling and prehaustoria development. Gabaculine significantly reduced coiling and prehaustoria development under far‐red or a mixture of red and far‐red light but not under blue or a mixture of blue and far‐red light, indicating that cryptochromes are involved in blue‐induced coiling and prehaustoria development.  相似文献   

13.
用小角 X 射线散射(SAXS)法研究了苯、丙酮对磷脂酰乙醇胺(PE)液晶态结构的影响.实验结果表明:苯能使 PE 液晶态先从片层相解束变成立方相.然后再诱导立方相变成六角形 H相,最后促使六角形 H相解束变成液态.在解束相变中出现了红移现象.丙酮也有使 PE 液晶态先从片层相解束变成立方相,在解束相变中也出现红移现象,但再诱导立方相变成六角形 H相之后,不是促使其变成液相,而是将其稳定在六角形 H相.  相似文献   

14.
Echinococcus multilocularis was identified in a coyote in Indiana in January 1990, prompting an investigation of the distribution and prevalence of the parasite in wild canids in Indiana and surrounding states. In 1990-1991, the parasite was found throughout northern and central Indiana, in northwestern Ohio, and in east-central Illinois. In 1993-1994, 162 wild canids (97 red foxes, 54 coyotes, 11 gray foxes) were collected from Michigan, and an additional 75 (55 red foxes, 7 coyotes, 13 gray foxes) from Ohio, and examined for this parasite. Of these, 15 wild canids (6.3%) were found to be infected with E. multilocularis , including 4 of 97 (4.1%) red foxes from Michigan and 9 of 55 (16.4%) red foxes and 2 of 7 (28.6%) coyotes from Ohio. In Michigan, all infected animals were from the central and southwestern parts of the state. No infected animals were found in northern Michigan, including the Upper Peninsula. In Ohio, infected animals were limited to the northwestern and west-central portions of the state. These findings constitute new state and distribution records for E. multilocularis in the midwestern United States and indicate that the parasite continues to spread eastward and into Michigan from the south.  相似文献   

15.
The fate of vanadate (+5 oxidation state of vanadium) taken up by the red cell was studied using EPR spectroscopy. The appearance of an EPR signal indicated that most of the cytoplasmic vanadate is reduced to the +4 oxidation state with axial symmetry characteristic of vanadyl ions. The signal at 23 degrees C was characteristic of an immobilized system indicating that the vanadyl ions in the cytoplasm are associated with a large molecule. [48V]Vanadium eluted with hemoglobin when the lysate from Na3[48V[O4-treated red cells was passed through a Sephadex G-100 column and rabbit anti-human hemoglobin serum caused a hemoglobin-specific precipitation of 48V when added to the red cell lysate. Both results indicate that hemoglobin is the protein which binds cytoplasmic vanadyl ions. However, neither sodium vanadate nor vanadyl sulfate bound to purified hemoglobin in vitro. Finally, transient kinetics of vanadyl sulfate interaction with the sodium-and potassium-stimulated adenosine triphosphatase showed that the +4 oxidation state of vanadium is less effective than the +5 oxidation state in inhibiting this enzyme. These results indicate that oxidation-reduction reactions in the cytoplasm are capable of relieving vanadate inhibition of cation transport.  相似文献   

16.
Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane from methyl-coenzyme M and coenzyme B in methanogenic archaea. The enzyme contains tightly bound the nickel porphinoid F430. The nickel enzyme has been shown to be active only when its prosthetic group is in the Ni(I) reduced state. In this state MCR exhibits the nickel-based EPR signal red1. We report here for the MCR from Methanothermobacter marburgensis that the EPR spectrum of the active enzyme changed upon addition or removal of coenzyme M, methyl coenzyme M and/or coenzyme B. In the presence of methyl-coenzyme M the red1 signal showed a more resolved 14N-superhyperfine splitting than in the presence of coenzyme M indicating a possible axial ligation of the substrate to the Ni(I). In the presence of methyl-coenzyme M and coenzyme B the red1 signal was the same as in the presence of methyl-coenzyme M alone. However, in the presence of coenzyme M and coenzyme B a highly rhombic EPR signal, MCR-red2, was induced, which was found to be light sensitive and appeared to be formed at the expense of the MCR-red1 signal. Upon addition of methyl-coenzyme M, the red2 signal disappeared and the red1 signal increased again. The red2 signal of MCR with 61Ni-labeled cofactor was significantly broadened indicating that the signal is nickel or nickel-ligand based.  相似文献   

17.
The presence and intensity of red coloration correlate with male dominance and testosterone in a variety of animal species, and even artificial red stimuli can influence dominance interactions. In humans, red stimuli are perceived as more threatening and dominant than other colours, and wearing red increases the probability of winning sporting contests. We investigated whether red clothing biases the perception of aggression and dominance outside of competitive settings, and whether red influences decoding of emotional expressions. Participants rated digitally manipulated images of men for aggression and dominance and categorized the emotional state of these stimuli. Men were rated as more aggressive and more dominant when presented in red than when presented in either blue or grey. The effect on perceived aggression was found for male and female raters, but only male raters were sensitive to red as a signal of dominance. In a categorization test, images were significantly more often categorized as ‘angry’ when presented in the red condition, demonstrating that colour stimuli affect perceptions of emotions. This suggests that the colour red may be a cue used to predict propensity for dominance and aggression in human males.  相似文献   

18.
High germination of curly dock (Rumex crispus L.) seeds is evident after suitable imbibition and temperature shift treatment, but germination at constant temperatures fails without an input of far red-absorbing form of phytochrome. Preliminary imbibitions at high temperatures (30 C) sharply reduce germination induced by temperature shifts. High germination may be restored by low energies of red radiation, or by brief far red adequate for the photosteady state. Prolonged far red during imbibition also nullifies temperature shift-induced germination. After prolonged far red, high germination may be restored by red radiation of an energy dependent upon the duration of the far red treatment. The evidence supports the conclusion that dark germination induced by temperature shifts arises from the interaction of pre-existent far red-absorbing form of phytochrome in the mature seeds with the temperature shift.  相似文献   

19.
The ability to respond to far‐red‐rich light is essential for seedlings germinating below dense canopies. Physiological and genetic studies have demonstrated that phytochrome A is the only photoreceptor mediating responses to far‐red light. However, all phytochromes including phytochrome A are believed to be activated by red light and to be inactivated by far‐red light. To address the fundamental question of why phytochrome A has its highest physiological activity at presumably inactivating wavelengths, we analysed light‐induced degradation of phytochrome A in Arabidopsis. Rate constants were obtained for all reaction events in a two‐step model of degradation. Based on biochemical data, the model includes a tagging mechanism preceding degradation. The parameterized model describes Pr accumulation, wavelength dependencies of degradation kinetics and steady‐state levels as well as Pfr‐induced Pr degradation. Subsequently, experimentally derived fluence rate response curves, action spectrum and response curves to dichromatic irradiation were compared to simulations based on the model of degradation. Two kinetically defined phytochrome subspecies, untagged Pfr and tagged Pr, have steady‐state levels closely matching the physiological response curves. Therefore, sensing of far‐red light by phytochrome A can be quantitatively explained based exclusively on regulated protein degradation.  相似文献   

20.
Feng J  Lindahl PA 《Biochemistry》2004,43(6):1552-1559
The Ni-Fe-S-containing C-cluster of carbon monoxide dehydrogenases is the active site for catalyzing the reversible oxidation of CO to CO(2). This cluster can be stabilized in redox states designated C(ox), C(red1), C(int), and C(red2). What had until recently been the best-supported mechanism of catalysis involves a one-electron reductive activation of C(ox) to C(red1) and a catalytic cycle in which the C(red1) state binds and oxidizes CO, forming C(red2) and releasing CO(2). Recent experiments cast doubt on this mechanism, as they imply that activation requires reducing the C-cluster to a state more reduced than C(red1). In the current study, redox titration and stopped-flow kinetic experiments were performed to assess the previous results and conclusions. Problems in previous methods were identified, and related experiments for which such problems were eliminated or minimized afforded significantly different results. In contrast to the previous study, activation did not correlate with reduction of Fe-S clusters in the enzyme, suggesting that the potential required for activation was milder than that required to reduce these clusters (i.e., E(0)(act) > -420 mV vs SHE). Using enzyme preactivated in solutions that were poised at various potentials, lag phases were observed prior to reaching steady-state CO oxidation activities. Fits of the Nernst equation to the corresponding lag-vs-potential plot yielded a midpoint potential of -150 +/- 50 mV. This value probably reflects E degrees ' for the C(ox)/C(red1) couple, and it suggests that C(red1) is indeed active in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号