首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracts prepared from the stem barks of several Mexican copalchis species, including Hintonia latiflora, Exostema caribaeum and a commercial mixture of Hintonia standleyana and E. caribaeum (CM) showed significant hypoglycemic and antihyperglycemic effects. The extracts were tested in three different in vivo models using normal and streptozotocin (STZ)-induced diabetic rats. From the active extract of H. latiflora, 25-O-acetyl-3-O-beta-D-glucopyranosyl-23,24-dihydrocucurbitacin F (1), an analog of 23,24-dihydrocucurbitacin F, and several known compounds (2-8) were isolated; cucurbitacin 1 was also isolated from H. standleyana. Oral administration of H. latiflora extract [100mg/kg of body weight (bw)] and 5-O-beta-D-glucopyranosyl-7,3',4'-trihydroxy-4-phenylcoumarin (5) (30 mg/kg of bw) to STZ-induced diabetic rats, for a 30 day duration, restored blood glucose levels to normal values. The groups treated either with the active principle 5, or the extract of H. latiflora, showed less body weight loss than glibenclamide-treated and diabetic control groups (p<0.05). It was also demonstrated that the extract of H. latiflora regulated hepatic glycogen and plasma insulin levels (p<0.05). These data suggest that its antihyperglycemic effect is due in part to stimulation of insulin secretion and regulation of hepatic glycogen metabolism.  相似文献   

2.
3.
Rho family GTPases: more than simple switches   总被引:15,自引:0,他引:15  
Rho family GTPases control a large variety of biological processes. Cycling of Rho proteins between the GDP-bound and the GTP-bound state is controlled by several classes of regulatory proteins. In this review, we discuss the signal-transduction mechanisms that control these regulators. We will emphasize the subcellular localization of Rho GTPases and their regulatory proteins and the role of GTP hydrolysis in signal transmission.  相似文献   

4.
Exchangeable apolipoproteins have been the subject of intense biomedical investigation for decades. However, only in recent years the elucidation of the three-dimensional structure reported for several members of the apolipoprotein family has provided insights into their functions at a molecular level for the first time. Moreover, the role of exchangeable apolipoproteins in several cellular events distinct from lipid metabolism has recently been described. This review summarizes these contributions, which have not only allowed the identification of the apolipoprotein domains that determine substrate binding specificity and/or affinity but also the plausible molecular mechanism(s) involved.  相似文献   

5.
Steven P. Darwin 《Brittonia》1980,32(3):343-347
Lindenia radicans is found to be conspecific withHabroneuron mexicanum; the combinationH. radicans is made. Monotypic and known from only two Oaxacan collections,Habroneuron exhibits an unusual leaf venation, which is described and illustrated. A relationship with the tribe Rondeletieae is suggested.  相似文献   

6.
Membrane bound members of the M1 family: more than aminopeptidases   总被引:1,自引:0,他引:1  
In mammals the M1 aminopeptidase family consists of nine different proteins, five of which are integral membrane proteins. The aminopeptidases are defined by two motifs in the catalytic domain; a zinc binding motif HEXXH-(X18)-E and an exopeptidase motif GXMEN. Aminopeptidases of this family are able to cleave a broad range of peptides down to only to a single peptide. This ability to either generate or degrade active peptide hormones is the focus of this review. In addition to their capacity to degrade a range of peptides a number of these aminopeptidases have novel functions that impact on cell signalling and will be discussed.  相似文献   

7.
Using different data sets mainly from the plant family Rubiaceae, but in parts also from the Apocynaceae, Asteraceae, Lardizabalaceae, Saxifragaceae, and Solanaceae, we have investigated the effect of number of characters, number of taxa, and kind of data on bootstrap values within phylogenetic trees. The percentage of supported nodes within a tree is positively correlated with the number of characters, and negatively correlated with the number of taxa. The morphological analyses are based on few characters and weakly supported trees are expected. The percentage of supported nodes is also dependent on the kind of data analyzed. In analyses of Rubiaceae based on the same number of characters, RFLP data give trees with higher percentage of supported nodes than rbcL and morphological data. We also discuss the support values for particular nodes at the familial and subfamilial levels. Two new data sets of ndhF and rbcL sequences of Rubiaceae are analyzed and together with earlier studies of the family we can conclude that the monophyly of the Rubiaceae is supported and within the family there are three well supported, but not easily characterized, large subfamilies, Rubioideae, Cinchonoideae s.s. and Ixoroideae s.l. There are also a few genera (Luculia and Coptosapelta) unclassified to subfamily.  相似文献   

8.
Lactoferrin (LF) is an iron-binding glycoprotein of the transferrin family, today known to have multifunctional physiological activities. In humans, under normal conditions, LF has been found in blood, mucosal secretions, gastrointestinal fluids, urine and mostly in milk and colostrum. The first pioneering immunohistochemical report about LF distribution in human tissues dated in 1978; successively, many studies have been performed to analyze the LF immunohistochemical pattern in different normal and neoplastic tissues. In this review, we present data from literature concerning the evidence of LF in tumors together with those by us obtained during more than 25 years; the immunohistochemical applications to human neoplastic tissues have been done to investigate the LF pathogenetic role as well as its activity in cancer. After a systematic analysis of LF immunoreactivity in different human districts, a possible explanation for its presence and function has been modulated for each site or tissue, according to experimental evidences obtained either by in vivo as well as by in vitro studies.  相似文献   

9.
10.
An objective and quantitative method has been developed for measuring the hyper-reactivity of septum-lesioned rats. Twenty drugs belonging to various classes have been investigated as to their influence on this hyper-reactivity. Seventeen compounds inhibited septal hyperreactivity. One drug (methylphenidate) augmented it, while metamphetamine and physostigmine were ineffective. It has been concluded that the use of septal rats in pharmacological investigations does not fulfil expectations. The model cannot differentiate between depressants of various kinds, antidepressants, narcotics or central cholinolytics any more than do the much more simple procedures routinely used in pharmacological laboratories.  相似文献   

11.
12.
Successful adaptation to starvation in mammals depends heavily on the regulated mobilization of fatty acids from triacylglycerols stored in adipose tissue. Although it has long been recognized that cyclic AMP represents the critical second messenger and hormone-sensitive lipase (HSL)**Abbreviations used in this paper: ADRP, adipocyte differentiation-related protein; HSL, hormone-sensitive lipase; PKA, protein kinase A; TAG, triacylglycerol. the rate-determining enzyme for lipolysis, simple activation of the enzyme has failed to account for the robust augmentation of fatty release in response to physiological agonists. In this issue, Sztalryd et al. (2003) provide convincing support to the notion that the subcellular compartmentalization of lipase also regulates lipolysis, and, more importantly, that proteins other than HSL are localized to the lipid droplet and are indispensable for its optimal hydrolysis.  相似文献   

13.
14.
Mitochondria: more than just a powerhouse   总被引:26,自引:0,他引:26  
Pioneering biochemical studies have long forged the concept that the mitochondria are the 'energy powerhouse of the cell'. These studies, combined with the unique evolutionary origin of the mitochondria, led the way to decades of research focusing on the organelle as an essential, yet independent, functional component of the cell. Recently, however, our conceptual view of this isolated organelle has been profoundly altered with the discovery that mitochondria function within an integrated reticulum that is continually remodeled by both fusion and fission events. The identification of a number of proteins that regulate these activities is beginning to provide mechanistic details of mitochondrial membrane remodeling. However, the broader question remains regarding the underlying purpose of mitochondrial dynamics and the translation of these morphological transitions into altered functional output. One hypothesis has been that mitochondrial respiration and metabolism may be spatially and temporally regulated by the architecture and positioning of the organelle. Recent evidence supports and expands this idea by demonstrating that mitochondria are an integral part of multiple cell signaling cascades. Interestingly, proteins such as GTPases, kinases and phosphatases are involved in bi-directional communication between the mitochondrial reticulum and the rest of the cell. These proteins link mitochondrial function and dynamics to the regulation of metabolism, cell-cycle control, development, antiviral responses and cell death. In this review we will highlight the emerging evidence that provides molecular definition to mitochondria as a central platform in the execution of diverse cellular events.  相似文献   

15.
16.
Ki-67 protein has been widely used as a proliferation marker for human tumor cells for decades. In recent studies, multiple molecular functions of this large protein have become better understood. Ki-67 has roles in both interphase and mitotic cells, and its cellular distribution dramatically changes during cell cycle progression. These localizations correlate with distinct functions. For example, during interphase, Ki-67 is required for normal cellular distribution of heterochromatin antigens and for the nucleolar association of heterochromatin. During mitosis, Ki-67 is essential for formation of the perichromosomal layer (PCL), a ribonucleoprotein sheath coating the condensed chromosomes. In this structure, Ki-67 acts to prevent aggregation of mitotic chromosomes. Here, we present an overview of functional roles of Ki-67 across the cell cycle and also describe recent experiments that clarify its role in regulating cell cycle progression in human cells.  相似文献   

17.
18.
19.
The p53 transactivation domain (p53TAD) is an intrinsically disordered protein (IDP) domain that undergoes coupled folding and binding when interacting with partner proteins like the E3 ligase, MDM2, and the 70 kDa subunit of replication protein A, RPA70. The secondary structure and dynamics of six closely related mammalian homologues of p53TAD were investigated using nuclear magnetic resonance (NMR) spectroscopy. Differences in both transient secondary structure and backbone dynamics were observed for the homologues. Many of these differences were localized to the binding sites for MDM2 and RPA70. The amount of transient helical secondary structure observed for the MDM2 binding site was lower for the dog and mouse homologues, compared with human, and the amount of transient helical secondary structure observed for the RPA70 binding site was higher for guinea pig and rabbit, compared with human. Differences in the amount of transient helical secondary structure observed for the MDM2 binding site were directly related to amino acid substitutions occurring on the solvent exposed side of the amphipathic helix that forms during the p53TAD/MDM2 interaction. Differences in the amount of transient helical secondary structure were not as easily explained for the RPA70 binding site because of its extensive sequence divergence. Clustering analysis shows that the divergence in the transient secondary structure of the p53TAD homologues exceeds the amino acid sequence divergence. In contrast, strong correlations were observed between the backbone dynamics of the homologues and the sequence identity matrix, suggesting that the dynamic behavior of IDPs is a conserved evolutionary feature. Proteins 2013; 81:1686–1698. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
The Ime2 protein kinase family in fungi: more duties than just meiosis   总被引:2,自引:0,他引:2  
Ime2 of the budding yeast Saccharomyces cerevisiae belongs to a family of conserved protein kinases displaying sequence similarities to both cyclin-dependent kinases and mitogen-activated protein kinases. Ime2 has a pivotal role for meiosis and sporulation. The involvement of this protein kinase in the regulation of various key events in meiosis, such as the initiation of DNA replication, the expression of meiosis-specific genes and the passage through the two consecutive rounds of nuclear divisions has been characterized in detail. More than 20 years after the identification of the IME2 gene, a recent report has provided the first evidence for a function of this gene outside of meiosis, which is the regulation of pseudohyphal growth. In the last few years, Ime2-related protein kinases from various fungal species were studied. Remarkably, these homologues are not generally required for meiosis, but instead have other specific tasks. In filamentous ascomycete species, Ime2 homologues are involved in the inhibition of fruiting body formation in response to environmental signals. In the pathogenic basidiomycetes Ustilago maydis and Cryptococcus neoformans, members of this kinase family apparently have primary roles in regulating mating. Thus, Ime2-related kinases exhibit an amazing variety in controlling sexual developmental programs in fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号