首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evaluation of: Deighton RF, Kerr LE, Short DM et al. Network generation enhances interpretation of proteomics data from induced apoptosis. Proteomics DOI: 10.1002/pmic.200900112 (2010) (Epub ahead of print).

The huge ongoing improvements in proteomics technologies, including the development of high-throughput mass spectrometry, are resulting in ever increasing information on protein behavior during cellular processes. The exponential accumulation of proteomics data has the promise to advance biomedical sciences by shedding light on the most important events that regulate mammalian cells under normal and pathophysiological conditions. This may provide practical insights that will impact medical practice and therapy, and may permit the development of a new generation of personalized therapeutics. Proteomics, as a powerful tool, creates numerous opportunities as well as challenges. At the different stages, data interpretation requires proteomics analysis, various tools to help deal with large proteomics data banks and the extraction of more functional information. Network analysis tools facilitate proteomics data interpretation and predict protein functions, functional interactions and in silica identification of intracellular pathways. The work reported by Deighton and colleagues illustrates an example of improving proteomics data interpretation by network generation. The authors used ingenuity pathway analysis to generate a protein network predicting direct and indirect interaction between 13 proteins found to be affected by staurosporine treatment. Importantly, the authors highlight the caution required when interpreting the results from a small number of proteins analyzed using network analysis tools.  相似文献   

2.
3.
Protein–protein interaction networks (PPINs) are a powerful tool to study biological processes in living cells. In this review, we present the progress of PPIN studies from abstract to more detailed representations. We will focus on 3D interactome networks, which offer detailed information at the atomic level. This information can be exploited in understanding not only the underlying cellular mechanisms, but also how human variants and disease-causing mutations affect protein functions and complexes’ stability. Recent studies have used structural information on PPINs to also understand the molecular mechanisms of binding partner selection. We will address the challenges in generating 3D PPINs due to the restricted number of solved protein structures. Finally, some of the current use of 3D PPINs will be discussed, highlighting their contribution to the studies in genotype–phenotype relationships and in the optimization of targeted studies to design novel chemical compounds for medical treatments.  相似文献   

4.
A number of interesting issues have been addressed on biological networks about their global and local properties. The connection between the topological properties of proteins in Protein–Protein Interaction (PPI) networks and their biological relevance has been investigated focusing on hubs, i.e. proteins with a large number of interacting partners. We will survey the literature trying to answer the following questions: Do hub proteins have special biological properties? Do they tend to be more essential than non-hub proteins? Are they more evolutionarily conserved? Do they play a central role in modular organization of the protein interaction network? Are there structural properties that characterize hub proteins?  相似文献   

5.
The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a primary feature of most cancers. Mutations that directly alter protein sequence and structure drive the development of tumors through aberrant expression and modification of proteins, in many cases directly impacting components of signal transduction pathways and cellular architecture. Cancer-associated mutations may have direct or indirect effects on proteins and their interactions and while the effects of mutations on signaling pathways have been widely studied, how mutations alter underlying protein–protein interaction networks is much less well understood. Systematic mapping of oncoprotein protein interactions using proteomics techniques as well as computational network analyses is revealing how oncoprotein mutations perturb protein–protein interaction networks and drive the cancer phenotype.  相似文献   

6.
Emergence of drug resistance is a major problem in the treatment of many diseases including tuberculosis. To tackle the problem from a wholistic perspective, it is essential to understand the molecular mechanisms by which bacteria acquire drug resistance using a systems approach. Availability of genome-scale data of expression profiles under different drug exposed conditions and protein–protein interactions, makes it feasible to reconstruct and analyze systems-level models. A number of proteins involved in different resistance mechanisms, referred to as the resistome are identified from literature. The interaction of the drug directly with the resistome is unable to explain most resistance processes adequately, including that of increased mutations in the target’s binding site. We recently hypothesized that some communication might exist from the drug environment to the resistome to trigger emergence of drug resistance. We report here a network based approach to identify most plausible paths of such communication in Mycobacterium tuberculosis. Networks capturing both structural and functional linkages among various proteins were weighted based on gene expression profiles upon exposure to specific drugs and betweenness centrality of the interactions. Our analysis suggests that different drug targets and hence different drugs could trigger the resistome to different extents and through different routes. The identified paths correlate well with the mechanisms known through experiment. Some examples of the top ranked hubs in multiple drug specific networks are PolA, FadD1, CydA, a monoxygenase and GltS, which could serve as co-targets, that could be inhibited in order to retard resistance related communication in the cell.  相似文献   

7.
RAR1 and SGT1 are required for development and disease resistance in plants. In many cases, RAR1 and SGT1 regulate the resistance (R)-gene-mediated defense signaling pathways. Lr21 is the first identified NBS-LRR-type R protein in wheat and is required for resistance to the leaf rust pathogen. The Lr21-mediated signaling pathways require the wheat homologs of RAR1, SGT1, and HSP90. However, the molecular mechanisms of the Lr21-mediated signaling networks remain unknown. Here I present the DNA and protein sequences of TaRAR1 and TaSGT1, and demonstrate for the first time a direct protein-protein interaction between them.  相似文献   

8.
Advances in organelle interactomics have led to new insights into organelle functions. In this study, we considered the common mitochondrial PIN of four evolutionarily distant eukaryotic species, namely Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans. By comparative interactomics analysis of mitochondrial PINs in these organisms, five conserved modules were identified. Modules comprise the main mitochondrial tasks, including proteins involved in translation process, mitochondrial import inner membrane proteins, TCA cycle enzymes, mitochondrial electron transport chain, and metabolic enzymes. Furthermore, we reemphasize that subgraphs of network, i.e., motifs and themes, may represent evolutionarily conserved topological units which are biologically significant.  相似文献   

9.
Protein folding and assembly can be manipulated in in vitro systems by co-solvents at high concentrations. A number of co-solvents that enhance protein stability and assembly have been shown to be excluded from the protein surface. Such co-solvent exclusion has been demonstrated by dialysis experiments and shown to be correlated with their effects on protein stability and assembly.  相似文献   

10.
11.
Glioblastoma multiforme (GBM) is the most malignant of all the brain tumors with very low median survival time of one year, as per Central Brain Tumor Registry of the USA, 2001. Efforts are ongoing to understand this disease pathogenesis in complete details. Global gene expression changes in GBM pathogenesis have been studied by several groups using microarray technology (e.g. Carro et al., 2010). One of the many approaches to ‘understand the control mechanisms underlying the observed changes in the activity of a biological process’ (Cline et al., 2007) is integration of gene expression and protein–protein interactions (PPI) datasets. Among several examples, aberrant activation of Wnt/β-catenin signaling pathway as well as sonic hedgehog (SHH) signaling pathway is reported in GBMs (Klaus & Birchmeier, 2008). Further, these two pathways are also involved in proliferation and clonogenicity of glioma cancer stem cells (Li et al., 2009), which are thought to play a role in glioma initiation, proliferation, and invasion, and are one of the important points of intervention. Hedgehog–Gli1 signaling is also found to regulate the expression of stemness genes. In this paper, analyses of the relationship between the significant differential expression of these and other genes and the connectivity as well as topological features of a PPI network would be discussed. This way, genes potentially overlooked when relying solely on expression profiles may be identified which can be biologically relevant as possible drug target/s or disease biomarker/s.  相似文献   

12.
13.
The Raf/Mek/Erk signaling pathway, activated downstream of Ras primarily to promote proliferation, represents the best studied of the evolutionary conserved MAPK cascades. The investigation of the pathway has continued unabated since its discovery roughly 30 years ago. In the last decade, however, the identification of unexpected in vivo functions of pathway components, as well as the discovery of Raf mutations in human cancer, the ensuing quest for inhibitors, and the efforts to understand their mechanism of action, have boosted interest tremendously. From this large body of work, protein–protein interaction has emerged as a recurrent, crucial theme. This review focuses on the role of protein complexes in the regulation of the Raf/Mek/Erk pathway and in its cross-talk with other signaling cascades. Mapping these interactions and finding a way of exploiting them for therapeutic purposes is one of the challenges of future molecule-targeted therapy.  相似文献   

14.
Physical interactions between proteins are central to all biological processes. Yet, the current knowledge of who interacts with whom in the cell and in what manner relies on partial, noisy, and highly heterogeneous data. Thus, there is a need for methods comprehensively describing and organizing such data. LEVELNET is a versatile and interactive tool for visualizing, exploring, and comparing protein–protein interaction (PPI) networks inferred from different types of evidence. LEVELNET helps to break down the complexity of PPI networks by representing them as multi-layered graphs and by facilitating the direct comparison of their subnetworks toward biological interpretation. It focuses primarily on the protein chains whose 3D structures are available in the Protein Data Bank. We showcase some potential applications, such as investigating the structural evidence supporting PPIs associated to specific biological processes, assessing the co-localization of interaction partners, comparing the PPI networks obtained through computational experiments versus homology transfer, and creating PPI benchmarks with desired properties.  相似文献   

15.
Chikungunya is a fast-mutating virus causing Chikungunya virus disease (ChikvD) with a significant load of disability-adjusted life years (DALY) around the world. The outbreak of this virus is significantly higher in the tropical countries. Several experiments have identified crucial viral–host protein–protein interactions (PPIs) between Chikungunya Virus (Chikv) and the human host. However, no standard database that catalogs this PPI information exists. Here we develop a Chikv-Human PPI database, ChikvInt, to facilitate understanding ChikvD disease pathogenesis and the progress of vaccine studies. ChikvInt consists of 109 interactions and is available at www.chikvint.com .  相似文献   

16.
Protein–protein interaction networks are useful for studying human diseases and to look for possible health care through a holistic approach. Networks are playing an increasing and important role in the understanding of physiological processes such as homeostasis, signaling, spatial and temporal organizations, and pathological conditions. In this article we show the complex system of interactions determined by human Sirtuins (Sirt) largely involved in many metabolic processes as well as in different diseases. The Sirtuin family consists of seven homologous Sirt-s having structurally similar cores but different terminal segments, being rather variable in length and/or intrinsically disordered. Many studies have determined their cellular location as well as biological functions although molecular mechanisms through which they act are actually little known therefore, the aim of this work was to define, explore and understand the Sirtuin-related human interactome. As a first step, we have integrated the experimentally determined protein–protein interactions of the Sirtuin-family as well as their first and second neighbors to a Sirtuin-related sub-interactome. Our data showed that the second-neighbor network of Sirtuins encompasses 25% of the entire human interactome, and exhibits a scale-free degree distribution and interconnectedness among top degree nodes. Moreover, the Sirtuin sub interactome showed a modular structure around the core comprising mixed functions. Finally, we extracted from the Sirtuin sub-interactome subnets related to cancer, aging and post-translational modifications for information on key nodes and topological space of the subnets in the Sirt family network.  相似文献   

17.
Intraductal papillary mucinous neoplasm (IPMN) is a type of tumor that grows within the pancreatic ducts. It is a progress from hyperplasia to intraductal adenoma (IPMA), to noninvasive carcinoma, and ultimately to invasive carcinoma (IPMC). The objective of this study was to explore the molecular mechanism of the progression from IPMA to IPMC. By using the GSE19650 affymetrix microarray data accessible from Gene Expression Omnibus (GEO) database, we first identified the differentially expressed genes (DEGs) between IPMA and IPMC, followed by the protein–protein interaction and single-nucleotide polymorphism (SNP) analysis of the DEGs. Our study identified thousands of DEGs which involved regulation of cell cycle and apoptosis in this progression from IPMA to IPMC. Protein–protein interaction network construction found that MYC, IL6ST, NR3C1, CREBBP, GATA1 and LRP1 might play an important role in the progression. Furthermore, the SNP analysis confirmed the association between BRAC1 and pancreas cancer. In conclusion, our data provide a comprehensive bioinformatics analysis of genes and pathways which may be involved in the progression of IPMN from IPMA to IPMC.  相似文献   

18.
Post-translational protein modifications, such as tyrosine phosphorylation, regulate protein–protein interactions (PPIs) critical for signal processing and cellular phenotypes. We extended an established yeast two-hybrid system employing human protein kinases for the analyses of phospho-tyrosine (pY)-dependent PPIs in a direct experimental, large-scale approach. We identified 292 mostly novel pY-dependent PPIs which showed high specificity with respect to kinases and interacting proteins and validated a large fraction in co-immunoprecipitation experiments from mammalian cells. About one-sixth of the interactions are mediated by known linear sequence binding motifs while the majority of pY-PPIs are mediated by other linear epitopes or governed by alternative recognition modes. Network analysis revealed that pY-mediated recognition events are tied to a highly connected protein module dedicated to signaling and cell growth pathways related to cancer. Using binding assays, protein complementation and phenotypic readouts to characterize the pY-dependent interactions of TSPAN2 (tetraspanin 2) and GRB2 or PIK3R3 (p55γ), we exemplarily provide evidence that the two pY-dependent PPIs dictate cellular cancer phenotypes.  相似文献   

19.
Gestational diabetes mellitus (GDM) is associated with the increase of glucose in the blood rather than being absorbed by the cells. A better understanding of the signaling pathways is necessary to understand the pathophysiology of GDM. This study provides details about a series of signaling pathways and protein–protein interactions involved in the pathogenesis of GDM and their evaluations in GDM development. Protein–protein interactions were found between proteins of several signaling pathways that suggest interlink between these signaling pathways. Protein–protein interactions were generated with high confidence interaction scores based on textmining, cooccurrence, coexpression, neighborhood, gene fusion, experiments, and databases. The dysregulation of signaling pathways may also contribute to the increased risk of complications associated with GDM in the mother and child. Further, studies on signaling pathways involved in the pathogenesis of GDM would help in the development of an effective intervention to prevent GDM along with the identification of key targets for effective therapies in the future.  相似文献   

20.
Molecular Biology - Huntingtin (HTT) occurs in the neuronal cytoplasm and can interact with structural elements of synapses. Huntington’s disease (HD) results from pathological expansion of a...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号