首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we describe the SAR of a series of potent and selective mPGES-1 inhibitors based on an oxicam template. Compound 13j demonstrated low nanomolar mPGES-1 inhibition in an enzyme assay. In addition, it displayed PGE2 inhibition in a cell-based assay (0.42 μM) and had over 238-fold selectivity for mPGES-1 over COX-2 and over 200-fold selectivity for mPGES-1 over 6-keto PGF.  相似文献   

2.
Selective inhibition of pro-inflammatory prostaglandin (PG)E2 formation via microsomal PGE2 synthase-1 (mPGES-1) might be superior over inhibition of all cyclooxygenase (COX)-derived products by non-steroidal anti-inflammatory drugs (NSAIDs) and coxibs. We recently showed that benzo[g]indol-3-carboxylates potently suppress leukotriene biosynthesis by inhibiting 5-lipoxygenase. Here, we describe the discovery of benzo[g]indol-3-carboxylates as a novel class of potent mPGES-1 inhibitors (IC50 ? 0.1 μM). Ethyl 2-(3-chlorobenzyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (compound 7a) inhibits human mPGES-1 in a cell-free assay (IC50 = 0.6 μM) as well as in intact A549 cells (IC50 = 2 μM), and suppressed PGE2 pleural levels in rat carrageenan-induced pleurisy. Inhibition of cellular COX-1/2 activity was significantly less pronounced. Compound 7a significantly reduced inflammatory reactions in the carrageenan-induced mouse paw edema and rat pleurisy. Together, based on the select and potent inhibition of mPGES-1 and 5-lipoxygenase, benzo[g]indol-3-carboxylates possess potential as novel anti-inflammatory drugs with a valuable pharmacological profile.  相似文献   

3.
A series of 6-nitro-3-(m-tolylamino) benzo[d]isothiazole 1,1-dioxide analogues were synthesized and evaluated for their inhibition activity against 5-lipoxygenase (5-LOX) and microsomal prostaglandin E2 synthase (mPGES-1). These compounds can inhibit both enzymes with IC50 values ranging from 0.15 to 23.6 μM. One of the most potential compounds, 3g, inhibits 5-LOX and mPGES-1 with IC50 values of 0.6 μM, 2.1 μM, respectively.  相似文献   

4.
The microsomal prostaglandin E2 synthase 1 (mPGES-1) became a desirable target in recent years for the research of new anti-inflammatory drugs. Even though many potent inhibitors of human mPGES-1, tested in vitro assay systems, have been synthesized, they all failed in preclinical trials in rodent models of inflammation, due to the lack of activity on rodent enzyme. Within this work we want to present a new class of mPGES-1 inhibitors derived from a benzenesulfonamide scaffold with inhibitory potency on human and murine mPGES-1. Starting point with an IC50 of 13.8 μM on human mPGES-1 was compound 1 (4-{benzyl[(4-methoxyphenyl)methyl]sulfamoyl}benzoic acid; FR4), which was discovered by a virtual screening approach. Optimization during a structure–activity relationship (SAR) process leads to compound 28 (4-[(cyclohexylmethyl)[(4-phenylphenyl)methyl]sulfamoyl]benzoic acid) with an improved IC50 of 0.8 μM on human mPGES-1. For the most promising compounds a broad pharmacological characterization has been carried out to estimate their anti-inflammatory potential.  相似文献   

5.
We present the synthesis and biological evaluation of a collection of s-triazine derivatives as a novel scaffold of compounds with the capability to inhibit the PGE2 production in LPS-induced RAW 264.7 macrophage cells. A total of 12 derivatives were synthesized and assayed for PGE2 reduction at 10 μM concentration. Two compounds (7b and 7i) exhibiting >90% inhibition of PGE2 production were found to have IC50 values of 5.76 and 5.52 μM, respectively. They were counter screened for inhibition on COX-2 activity in a cell free assay. Specifically, compound 7i (R1 = 4-Bn-Ph, R2 = Cl, R3 = Ph, R5 = CO2Me) was highly active in cells while maintaining little COX-2 inhibition (∼0% at 10 μM). Molecular docking study provides the possibility that compound 7i could inhibit PGE2 production by blocking the PGH2 binding site of mPGES-1 instead of COX-2 enzyme. Based on this result, our synthetic efforts will focus on intensive structure–activity relationship (SAR) study of s-triazine scaffold to discovery a potential PGE2 synthesis inhibitor.  相似文献   

6.
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase that catalyzes the conversion of prostaglandin PGH2 to PGE2 and represents a novel target for therapeutic treatment of inflammatory disorders. It is essential to identify mPGES-1 inhibitor with novel scaffold as new hit or lead compound for the purpose of the next-generation anti-inflammatory drugs. Herein we report the discovery of sulfonamido-1,2,3-triazole-4,5-dicarboxylic derivatives as a novel class of mPGES-1 inhibitors identified through fragment-based virtual screening and in vitro assays on the inhibitory activity of the actual compounds. 1-[2-(N-Phenylbenzenesulfonamido)ethyl]-1H-1,2,3-triazole-4,5-dicarboxylic acid (6f) inhibits human mPGES-1 (IC50 of 1.1 μM) with high selectivity (ca.1000-fold) over both COX-1 and COX-2 in a cell-free assay. In addition, the activity of compound 6f was again tested at 10 μM concentration in presence of 0.1% Triton X-100 and found to be reduced to 1/4 of its original activity without this detergent. Compared to the complete loss of activity of nuisance inhibitor with the detergent, therefore, compound 6f would be regarded as a partial nuisance inhibitor of mPGES-1 with a novel scaffold for the optimal design of more potent mPGES-1 inhibitors.  相似文献   

7.
Despite the prepdominat agent causing severe entero-pathogenic diarrhea in swine, there are no effective therapeutical treatment of porcine epidemic diarrhea virus (PEDV). In this study, we evaluated the antiviral activity of five phlorotannins isolated from Ecklonia cava (E. cava) against PEDV. In vitro antiviral activity was tested using two different assay strategies: (1) blockage of the binding of virus to cells (simultaneous-treatment assay) and (2) inhibition of viral replication (post-treatment assay). In simultaneous-treatment assay, compounds 25 except compound 1 exhibited antiviral activities of a 50% inhibitory concentration (IC50) with the ranging from 10.8 ± 1.4 to 22.5 ± 2.2 μM against PEDV. Compounds 15 were completely blocked binding of viral spike protein to sialic acids at less than 36.6 μM concentrations by hemagglutination inhibition. Moreover, compounds 4 and 5 of five phlorotannins inhibited viral replication with IC50 values of 12.2 ± 2.8 and 14.6 ± 1.3 μM in the post-treatment assay, respectively. During virus replication steps, compounds 4 and 5 exhibited stronger inhibition of viral RNA and viral protein synthesis in late stages (18 and 24 h) than in early stages (6 and 12 h). Interestingly, compounds 4 and 5 inhibited both viral entry by hemagglutination inhibition and viral replication by inhibition of viral RNA and viral protein synthesis, but not viral protease. These results suggest that compounds isolated from E. cava have strong antiviral activity against PEDV, inhibiting viral entry and/or viral replication, and may be developed into natural therapeutic drugs against coronavirus infection.  相似文献   

8.
The series of imidazoldine-2-thiones 2 and tetrahydropyrimidine-2-thiones 3 were discovered as inhibitor of α-MSH-induced melanin production in melanoma B16 cells. The primary bioassay showed that 1-(4-ethylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3e (>100% inhibition at 10 μM, IC50 = 1.2 μM) and 1-(4-tert-butylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3f (>100% inhibition at 10 μM, IC50 = 0.76 μM) exhibited potent inhibitory effect against α-MSH-induced melanin production. Compounds 3 inhibit the biosynthesis of tyrosinase without affecting its catalytic activity in melanogenesis.  相似文献   

9.
Natural o-dihydroxyisoflavone (ODI) derivatives with variable hydroxyl substituent at the aromatic ring of isoflavone and three known isoflavones were isolated from five-year-old Korean fermented soybean paste (Doenjang) and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells comparing with other known isoflavones, 7,8,4′-trihydroxyisoflavone (1) and 7,3′,4′-trihydroxyisoflavone (2) inhibited tyrosinase by 50% at a concentration of 11.21 ± 0.8 μM and 5.23 ± 0.6 μM (IC50), respectively, whereas, 6,7,4′-trihydroxyisoflavone (3), daidzein (4), glycitein (5) and genistein (6) showed very low inhibition activity. Furthermore, those compounds significantly suppressed the cellular melanin formation by 50% at a concentration of 12.23 ± 0.7 μM (1), 7.83 ± 0.7 μM (2), and 57.83 ± 0.5(6) and show more activity than arbutin. But, compounds 3, 4, and 5 showed lower inhibition activity. This study shows that the position of hydroxyl substituent at the aromatic ring of isoflavone plays an important role in the intracellular regulation of melanin formation in cell-based assay system.  相似文献   

10.
11.
Phenanthrene imidazoles 26 and 44 have been identified as novel potent, selective and orally active mPGES-1 inhibitors. These inhibitors are significantly more potent than the previously reported chlorophenanthrene imidazole 1 (MF63) with a human whole blood IC50 of 0.20 and 0.14 μM, respectively. It exhibited a significant analgesic effect in a guinea pig hyperalgesia model at oral doses as low as 14 mg/kg. Both active and selective mPGES-1 inhibitors (26 and 44) have a relatively distinct pharmacokinetic profile and are suitable for clinical development.  相似文献   

12.
13.
Neuraminidase (NA) is one of the key surface proteins of the influenza virus, which is an important target for anti-influenza therapy. In the present study, bioassay-guided fractionation led to isolation of two new compounds, rhamnetin-3-O-β-d-glucuronide-6″-methyl ester (1) and rhamnazin-3-O-β-d-glucuronide-6″-methyl ester (2), along with seventeen known compounds (3-19), from the MeOH extract of Flos Caryophylli using in vitro NA inhibition assay. These isolated compounds exhibited significantly inhibitory effects on the NA with IC50 values ranging from 8.4 to 94.1 μM and were found to protect MDCK cells from A (H1N1) influenza infections (EC50 = 1.5–84.7 μM) with very low cytotoxicity to the host cells (CC50 = 374.3–1266.9 μM)), with selective index (SI) ranging from 7 to 297. The primary structure-relationships of these isolates were also discussed.  相似文献   

14.
A series of novel 2-(4-(4-substituted piperazin-1-yl)benzylidene)-1H-indene-1,3(2H)-diones were designed, synthesized and appraised as multifunctional anti-Alzheimer agents. In vitro studies of compounds 2738 showed that these compounds exhibit moderate to excellent AChE, BuChE and Aβ aggregation inhibitory activity. Notably, compounds 34 and 38 appeared as most active multifunctional agents in the entire series and exhibited excellent inhibition against AChE (IC50 = 0.048 μM: 34; 0.036 μM: 38), Aβ aggregation (max% inhibition 82.2%, IC50 = 9.2 μM: 34; max% inhibition 80.9%, IC50 = 10.11 μM: 38) and displayed significant antioxidant potential in ORAC-FL assay. Both compounds also successfully diminished H2O2 induced oxidative stress in SH-SY5Y cells. Fascinatingly, compounds 34 and 38 showed admirable neuroprotective effects against H2O2 and Aβ induced toxicity in SH-SY5Y cells. Additionally, both derivatives showed no considerable toxicity in neuronal cell viability assay and represented drug likeness properties in the primarily pharmacokinetics study. All these results together, propelled out that compounds 34 and 38 might serve as promising multi-functional lead candidates for treatment of AD in the future.  相似文献   

15.
A series of new arylamide derivatives possessing terminal sulfonate or sulfamate moieties was designed and synthesized. The target compounds were tested for in vitro inhibitory effects against the steroid sulfatase (STS) enzyme in a cell-free assay system. The free sulfamate derivative 1j was the most active. It inhibited the enzymatic activity by 72.0% and 55.7% at 20 μM and 10 μM, respectively. Compound 1j was further tested for STS inhibition in JEG-3 placental carcinoma cells with high STS enzyme activity. It inhibited 93.9% of the enzyme activity in JEG-3 placental carcinoma cells at 20 μM with an efficacy near to that of the well-established drug STX64 as reference. At 10 μM, 1j inhibited 86.1% of the STS activity of JEG-3. Its IC50 value against the STS enzyme in JEG-3 cells was 0.421 μM. Thus, 1j represents an attractive new non-steroidal lead for further optimization.  相似文献   

16.
A series of twenty indole hydrazone analogs (121) were synthesized, characterized by different spectroscopic techniques such as 1H NMR and EI-MS, and screened for α-amylase inhibitory activity. All analogs showed a variable degree of α-amylase inhibition with IC50 values ranging between 1.66 and 2.65 μM. Nine compounds that are 1 (2.23 ± 0.01 μM), 8 (2.44 ± 0.12 μM), 10 (1.92 ± 0.12 μM), 12 (2.49 ± 0.17 μM), 13 (1.66 ± 0.09 μM), 17 (2.25 ± 0.1 μM), 18 (1.87 ± 0.25 μM), 20 (1.83 ± 0.63 μM), and 19 (1.97 ± 0.02 μM) showed potent α-amylase inhibition when compared with the standard acarbose (1.05 ± 0.29 μM). Other analogs showed good to moderate α-amylase inhibition. The structure activity relationship is mainly focusing on difference of substituents on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.  相似文献   

17.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

18.
mPGES-1 is inducible terminal synthase acting downstream of COX enzymes in arachidonic acid pathway, regulates the biosynthesis of pro-inflammatory prostaglandin PGE2. Cardiovascular side effect of coxibs and NSAIDs, selective for COX-2 inhibition, stimulated interest in mPGES-1, a therapeutic target with potential to deliver safe and effective anti-inflammatory drugs. The synthesis and structure activity relationship of a series of compounds from 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4(3H)-one scaffolds as mPGES-1 inhibitor are discussed. A set of analogs (28, 48, 49) were identified with <10 nM potencies in the recombinant human mPGES-1 enzyme and in the A549 cellular assays. These analogs were also found to be potent in the human whole blood assay (<400 nM). Furthermore, the representative compound 48 was shown to be selective with other prostanoid synthases and was able to effectively regulate PGE2 biosynthesis in clinically relevant inflammatory settings, in comparison with celecoxib.  相似文献   

19.
20.
Two new lignans, gymnothelignans V (1) and W (2), were isolated from a methanol extraction of Gymnotheca chinensis Decne. Their structures were established on the basis of extensive 1D and 2D NMR spectroscopy. Compound 1 exhibited moderate cytotoxicity against the HCT116, HCT15, A549, MCF-7 and HepG2 cancer cell lines with IC50 values of 45.1 μM, 26.9 μM, 49.6 μM, 30.0 μM and 49.7 μM, respectively. Compound 2 exhibited weak cytotoxicity against the A549 cancer cell line with an IC50 value of 41.3 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号