首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of glomerular basement membrane (GBM) total protein and collagen was assessed by two methods in vivo in normal and streptozotocin diabetic rats 4-6 weeks and 42-44 weeks after onset of hyperglycaemia, using L-[2, 3, 3H] proline as a radioactive precursor. The incorporation of tritiated proline into GBM hydroxyproline was used as a measure of collagen synthesis and that into proline as total protein synthesis. The basement membrane fractions from both short- and long-term diabetic rats attained much higher proline and hydroxyproline specific activities compared to normal GBM proline and hydroxyproline specific activities. Early insulin therapy with normalization of blood sugar levels in short-term (4-6 weeks) diabetic rats returned the abnormal increases in GBM total protein and collagen synthesis to normal. By contrast, poor glycaemic control with insulin did not prevent the increases in GBM protein synthesis. The results of the present study suggest that overall enhancement of GBM protein synthesis occurs in both short- and long-term streptozotocin diabetes. Early insulin therapy with normalization of blood sugar levels prevents this increase in GBM protein synthesis. Poor glycaemic control had no effect on abnormal GBM protein synthesis. This may be of potential significance in view of preventing chronic diabetic microvascular complications such as nephropathy.  相似文献   

2.
Type 2 diabetes is a heterogeneous metabolic disease characterized by insulin resistance and β-cell dysfunction leading to hyperglycaemia and dyslipidaemia. Dietary intervention seems to improve some of these cellular complications, namely insulin resistance. Our aim was to evaluate the effects of dietary restriction on systemic and skeletal muscle oxidative stress and insulin resistance in normal Wistar rats and Goto–Kakizaki (GK) rats, a non-obese type 2 diabetic animal model. Four-month-old normal and diabetic rats were separated in four groups. One group of each strain was maintained with ad libitum standard diet, and the other group was submitted to a dietary restriction (50% of control animals daily food intake), during 2 months. Metabolic profile, insulin resistance indexes and muscle lipids were determined. Oxidative stress parameters were also measured at systemic and muscle levels: protein carbonyl, 8-hydroxy-2′-deoxyguanosine and free 8-isoprostane. Dietary restriction improved lipid profile in both strains and urinary free 8-isoprostane and plasma carbonyl compounds in diabetic rats. An improvement of muscle triglycerides accumulation and 8-isoprostane concentration and a reduction of insulin resistance were also observed in GK rats. Our data show that dietary restriction ameliorates systemic and skeletal muscle oxidative stress state in type 2 diabetes, which is associated with improved insulin resistance.  相似文献   

3.
杨怡  马小允  崔福江  刘尊  芮炳峰 《生物磁学》2013,(24):4791-4793,4784
摘要:随着人们生活水平的不断提高以及国人寿命的不断延长,2型糖尿病(T2DM)&骨质疏松(OP)的发病率在全世界范围呈现增高趋势。T2DM并发OP受着性别、年龄、病程、高血糖、糖基化终末产物过多、胰岛素、慢性并发症、肥胖、瘦素、饮食、运动及降糖药物的多种因素影响。骨质疏松症作为糖尿病慢性并发症之一,已严重影响患者的生活质量,T2DM患者在控制血糖同时,应预防其相关因素,定期进行骨密度测定是极为重要的,临床医生应给予高度重视,进行早期预防和治疗。  相似文献   

4.
The state of prediabetes is characterized by an increase in insulin resistance and a decrease in pancreatic beta cell function. The prestage of type 2 diabetes mellitus can be identified by an impaired glucose tolerance and/or by an impaired fasting blood sugar. Apart from weight loss and increase in physical activity, the development of type 2 diabetes mellitus can also be prevented by dietary changes. A low-fat diet with a dietary fiber intake of more than 30g/d was shown to represent an effective preventive approach. A high-fiber diet has many positive effects on the physical health status. In addition to positive effects in the gastrointestinal tract it has an obvious potential to support weight reduction and to improve disturbances of carbohydrate and fat metabolism. At the present state of knowledge, insoluble dietary fibers as found in whole grain cereal products are considered to be especially effective in the prevention of type 2 diabetes mellitus. A high intake of fruits and vegetables as well as pulses also exerts health-promoting properties. A high-fiber diet also plays an important role in the prevention of obesity and coronary heart diseases.  相似文献   

5.
Diabetes is a group of metabolic diseases characterised by chronic hyperglycaemia caused by multiple causes, which is caused by insulin secretion and/or utilisation defects. It is characterised by increased fasting and postprandial blood glucose levels due to insulin deficiency or insulin resistance. It is reported that the harm of diabetes mainly comes from its complications, and the cardiovascular disease caused by diabetes is the primary cause of its harm. China has the largest number of diabetic patients in the world, and the prevention and control of diabetes are facing great challenges. In recent years, many kinds of literature have been published abroad, which have proved that coumarin and its derivatives are effective in the treatment of diabetic complications such as nephropathy and cardiovascular disease. In this paper, the types of antidiabetic drugs and the anti-diabetic mechanism of coumarins were reviewed.  相似文献   

6.
Mediterranean diet and metabolic diseases   总被引:2,自引:0,他引:2  
PURPOSE OF REVIEW: The objective of this article is to present evidence illustrating the relationship between Mediterranean diets and metabolic diseases, including obesity, type 2 diabetes, and the metabolic syndrome, and to briefly discuss potential mechanisms by which these diets can help in disease prevention and treatment. RECENT FINDINGS: Although the Mediterranean diet has long been celebrated for its impact on cardiovascular health, mounting evidence indicates a favorable effect on obesity and type 2 diabetes, as well. While health promotion strategies aimed at preventing adult obesity are emphasizing components of Mediterranean dietary patterns, a role for Mediterranean diets in attenuating the inflammatory burden associated with type 2 diabetes is also emerging. Moreover, a lower prevalence of the metabolic syndrome is associated with dietary patterns rich in fruits, vegetables, whole grains, dairy products, and unsaturated fats. Both epidemiological and interventional studies have revealed a protective effect of the Mediterranean diet against mild chronic inflammation and its metabolic complications. SUMMARY: Mounting evidence suggests that Mediterranean diets could serve as an anti-inflammatory dietary pattern, which could help fighting diseases that are related to chronic inflammation, including visceral obesity, type 2 diabetes and the metabolic syndrome.  相似文献   

7.
The SMXA-5 strain, a new mouse model for type 2 diabetes, is a recombinant inbred strain derived from non-diabetic SM/J and A/J strains. As dietary fat is a key component in the development of diabetes, we compared the glucose tolerance and diabetes-related traits among the SMXA-5, SM/J, and A/J strains while feeding a high-fat diet for 10 weeks. SMXA-5 fed on a high-fat diet showed an increased serum insulin concentration. Judging from the hyperinsulinemia in SMXA-5, this strain showed insulin resistance, an inability of peripheral tissues to respond to insulin, which was strengthened by feeding with a high-fat diet. When fed on a high-fat diet for 5 weeks, the SMXA-5 mice showed severely impaired glucose tolerance. On the other hand, SM/J showed mildly impaired glucose tolerance, even when fed on a high-fat diet for 10 weeks. These results indicate that SMXA-5 would be available for use as a diabetic model susceptible to a high-fat diet.  相似文献   

8.
Diabet. Med. 29, e382-e389 (2012) ABSTRACT: Aims To investigate the association between glycaemic control and patient socio-demographics, activation level, diabetes-related distress, assessment of care, knowledge of target HbA(1c) , and self-management behaviours, and to determine to what extent these factors explain the variance in HbA(1c) in a large Danish population of patients with Type 2 diabetes. Methods Cross-sectional survey and record review of 2045 patients from a specialist diabetes clinic. Validated scales measured patient activation, self-management behaviours, diabetes-related emotional distress, and perceived care. The electronic patient record provided information about HbA(1c) , medication, body mass index, and duration of diabetes. Data were analysed using multiple linear regression models with stepwise addition of covariates. Results The response rate was 54% (n?=?1081). Good glycaemic control was significantly associated with older age, higher education, higher patient activation, lower diabetes-related emotional distress, better diet and exercise behaviours, lower body mass index, shorter duration of disease and knowledge of HbA(1c) targets (P?相似文献   

9.
糖尿病已经成为严重威胁人类健康的疾病之一。目前已有研究证明肠道菌群在糖尿病的发生、发展中发挥着重要作用。肠道菌群在人体中处于动态平衡,但容易受到饮食、环境、细菌的相互作用以及抗菌药物等多种因素的影响。肠道菌群的变化可以导致肥胖、胰岛素抵抗、肠道渗透压改变以及代谢性内毒素血症等,从而促进糖尿病(1型及2型)的发生、发展,而益生菌在预防糖尿病的发生和改善糖尿病预后中的作用不可小视。本文从糖代谢、脂代谢、免疫及并发症等方面分析肠道菌群影响糖尿病发生发展的机制。  相似文献   

10.
The dietary effects of hyperglycemia increasingly result in type 2 diabetes in humans. Two species, the spiny mice (Acomys cahirinus) and the desert gerbil (Psammomys obesus), which have different metabolic responses to such effects, are discussed. Spiny mice exemplify a pathway that leads to diabetes without marked insulin resistance due to low supply of insulin on abundant nutrition, possibly characteristic of a desert animal. They respond with obesity and glucose intolerance, beta-cell hyperplasia, and hypertrophy on a standard rodent diet supplemented with fat-rich seeds. The accompanying hyperglycemia and hyperinsulinemia are mild and intermittent but after a few months, the enlarged pancreatic islets suddenly collapse, resulting in loss of insulin and ketosis. Glucose and other secretagogues produce only limited insulin release in vivo and in vitro, pointing to the inherent disability of the beta-cells to respond with proper insulin secretion despite their ample insulin content. On a 50% sucrose diet there is marked lipogenesis with hyperlipidemia without obesity or diabetes, although beta-cell hypertrophy is evident. P.obesus is characterized by muscle insulin resistance and the inability of insulin to activate the insulin signaling on a high-energy (HE) diet. Insulin resistance imposes a vicious cycle of Hyperglycemia and compensatory hyperinsulinemia, leading to beta-cell failure and increased secretion of proinsulin. Ultrastructural studies reveal gradual disappearance of beta-cell glucokinase, GLUT 2 transporter, and insulin, followed by apoptosis of beta-cells. Studies using the non-insulin-resistant HE diet-fed animals maintained as a control group are discussed. The insulin resistance that is evident to date in the normoglycemic state on a low-energy diet indicates sparing of glucose fuel in muscles of a desert-adapted animal for the benefit of glucose obligatory tissues. Also discussed are the effect of Psammomys age on the disabetogenicity of the HE diet; the impaired function of several components of the insulin signal transduction pathway in muscles, which reduces the availability of GLUT4 transporter; the testing of several antidiabetic modalities for the prevention of nutritional diabetes in Psammomys; and various complications related to the diabetic condition.  相似文献   

11.
According to epidemiological studies, type‐2 diabetes increases the risk of Alzheimer’s disease. Here, we induced hyperglycaemia in mice overexpressing mutant amyloid precursor protein and presenilin‐1 (APdE9) either by cross‐breeding them with pancreatic insulin‐like growth factor 2 (IGF‐2) overexpressing mice or by feeding them with high‐fat diet. Glucose and insulin tolerance tests revealed significant hyperglycaemia in mice overexpressing IGF‐2, which was exacerbated by high‐fat diet. However, sustained hyperinsulinaemia and insulin resistance were observed only in mice co‐expressing IGF‐2 and APdE9 without correlation to insulin levels in brain. In behavioural tests in aged mice, APdE9 was associated with poor spatial learning and the combination of IGF‐2 and high‐fat diet further impaired learning. Neither high‐fat diet nor IGF‐2 increased β‐amyloid burden in the brain. In male mice, IGF‐2 increased β‐amyloid 42/40 ratio, which correlated with poor spatial learning. In contrast, inhibitory phosphorylation of glycogen synthase kinase 3β, which correlated with good spatial learning, was increased in APdE9 and IGF‐2 female mice on standard diet, but not on high‐fat diet. Interestingly, high‐fat diet altered τ isoform expression and increased phosphorylation of τ at Ser202 site in female mice regardless of genotype. These findings provide evidence for new regulatory mechanisms that link type‐2 diabetes and Alzheimer pathology.  相似文献   

12.
Dupre J 《Regulatory peptides》2005,128(2):149-157
The remission phase of Type 1 diabetes mellitus is associated with substantial recovery of beta-cell function and with marked improvement of endogenous insulin responses to meals in the early months after diagnosis, accompanied by little or no improvement in the insulin response to parenteral glucose, suggesting that the incretin function may be important in glycaemic regulation in this phase of diabetes. Preservation of the insulin response to parenteral glucagon-like peptide-1 (GLP-1), contrasting with lack of stimulation of insulin secretion by the other known incretin gastric inhibitory polypeptide (GIP), prompted studies with exogenous GLP-1 in recent-onset Type 1 diabetes. These studies showed substantial reduction of glycaemic excursions after ingestion of mixed nutrients during intravenous infusion of GLP-1 without administration of insulin, in subjects with a range of endogenous secretion of insulin in response to meals as demonstrated by blood levels of the insulin-connecting peptide (CP). These effects were independent of stimulation of blood levels of CP and were reproduced in volunteers with no endogenous release of CP in response to meals. The glycaemic effects were associated with inhibition of abnormal rises of blood levels of glucagon, and with suppression of endogenous release of human pancreatic polypeptide (HPP), by GLP-1. It was hypothesized that a major component of the glycaemic effect is attributable to the known action of GLP-1 to inhibit gastric emptying and to inhibit glucagon secretion. Studies of the effects of GLP-1 agonists (GLP-1 and exendin-4) given together with established insulin doses before a meal supported the hypothesis. The more prolonged actions of exendin-4 were accompanied by greater and more prolonged reduction of glycaemic effects of ingestion of meals in volunteers with CP-negative Type 1 diabetes mellitus, during intensive insulin therapy, in whom delay of gastric emptying was confirmed by studies of blood levels of acetaminophen ingested with the meals. Side effect-free doses of exendin-4 given together with insulin in volunteers with CP-negative Type 1 diabetes receiving continuing intensive insulin therapy demonstrated the capacity of this combination therapy to normalize blood glucose levels after ingestion of meals that were consistent with the dietary program of the volunteers, without apparent increased risk of hypoglycaemia within a normal between-meals interval. It is suggested that further and more prolonged studies of the use of long-acting GLP-1 agonists as congeners with insulin in Type 1 diabetes mellitus are indicated.  相似文献   

13.
Animal models for insulin resistance and type 2 diabetes are required for the study of the mechanism of these phenomena and for a better understanding of diabetes complications in human populations. Type 2 diabetes is a syndrome that affects 5-10% of the adult population. Hyperinsulinaemia, hypertriglyceridaemia, decreased high-density lipoprotein (HDL) cholesterol levels, obesity and hypertension, all form a cluster of risk factors that increase the risk of coronary artery disease, and are known as insulin resistance syndrome or syndrome X. The gerbil, Psammomys obesus is characterized by primary insulin resistance and is a well-defined model for dietary induced type 2 diabetes. Weanling Psammomys and Albino rats were held individually for several weeks on high energy (HE) and low energy (LE) diets in order to determine the development of metabolic changes leading to diabetes. Feeding Psammomys on HE diet resulted in hyperglycaemia (303 +/- 40 mg/dl), hyperinsulinaemia (194 +/- 31 microU/ml) and a moderate elevation in body weight, obesity and plasma triglycerides. Albino rats on HE diet demonstrated an elevation in plasma insulin (30 +/- 4 microU/ml), hypertriglyceridaemia (170 +/- 11 mg/dl), an elevation in body weight and obesity, but maintained normoglycaemia (98 +/- 6 mg/dl). Psammomys represent a model that is similar to human populations, with primary insulin resistance expressed in young age, which leads to a high percentage of adult type 2 diabetes. Examples for such populations are the Pima Indians, Australian Aborigines and many other Third World populations. The results indicate that the metabolism of Psammomys is well adapted towards life in a low energy environment, where Psammomys takes advantage of its capacity for a constant accumulation of adipose tissue that will serve for maintenance and breeding in periods of scarcity. This metabolism known as 'thrifty metabolism', is compromised at a high nutrient intake.  相似文献   

14.
Background

Dietary sugar and starch affect plasma glucose and insulin concentrations. Little information is available about the effect of dietary fibre on plasma glucose and insulin concentration. It is hypothesized that different dietary fibre compositions will alter post-prandial glycaemic- and insulinemic index of test meals. The objective was to measure postprandial glucose and insulin concentrations in horses fed meals of different fibre compositions.

Methods

Blood was drawn via jugular vein puncture and the glycaemic and insulinemic index were calculated.

Results

The meal effect on glycaemic and insulinemic response followed the expected pattern, where plasma concentrations increased after feeding and declined after peak concentration. Glycaemic index was 100 (H), 102 (OB), 102 (BB) and 106 (M) and did not differ significantly between meals. Insulinemic index was 100 (H), 140 (OB), 121 (BB) and 125 (M) and did not differ significantly between meals.

Conclusions

In conclusion, meals containing different fibre compositions did not affect the glycaemic- and insulinemic index in horses.

  相似文献   

15.
Fenugreek is an ancient herb that has been used for centuries to treat diabetes. However, how the fenugreek-derived chemical compounds work in treating diabetes remains unclarified. Herein, we integrate molecular docking and network pharmacology to elucidate the active constituents and potential mechanisms of fenugreek against diabetes. First, 19 active compounds from fenugreek and 71 key diabetes-related targets were identified through network pharmacology analysis. Then, molecular docking and simulations results suggest diosgenin, luteolin and quercetin against diabetes via regulation of the genes ESR1, CAV1, VEGFA, TP53, CAT, AKT1, IL6 and IL1. These compounds and genes may be key factors of fenugreek in treating diabetes. Cells results demonstrate that fenugreek has good biological safety and can effectively improve the glucose consumption of IR-HepG2 cells. Pathway enrichment analysis revealed that the anti-diabetic effect of fenugreek was regulated by the AGE-RAGE and NF-κB signalling pathways. It is mainly associated with anti-oxidative stress, anti-inflammatory response and β-cell protection. Our study identified the active constituents and potential signalling pathways involved in the anti-diabetic effect of fenugreek. These findings provide a theoretical basis for understanding the mechanism of the anti-diabetic effect of fenugreek. Finally, this study may help for developing anti-diabetic dietary supplements or drugs based on fenugreek.  相似文献   

16.
n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA), mainly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), are present in mammal tissues both from endogenous synthesis from desaturation and elongation of 18:3 n-3 and/or from dietary origin (marine products and fish oils). In rodents in vivo, n-3 LC-PUFA have a protective effect against high fat diet induced insulin resistance. Such an effect is explained at the molecular level by the prevention of many alterations of insulin signaling induced by a high fat diet. Indeed, the protective effect of n-3 LC-PUFA results from the following: (a) the prevention of the decrease of phosphatidyl inositol 3' kinase (PI3 kinase) activity and of the depletion of the glucose transporter protein GLUT4 in the muscle; (b) the prevention of the decreased expression of GLUT4 in adipose tissue. In addition, n-3 LC-PUFA inhibit both the activity and expression of liver glucose-6-phosphatase which could explain the protective effect with respect to the excessive hepatic glucose output induced by a high fat diet. n-3 LC-PUFA also decrease muscle intramyofibrillar triglycerides and liver steatosis. This last effect results on the one hand, from a decreased expression of lipogenesis enzymes and of delta 9 desaturase (via a depleting effect on sterol response element binding protein 1c (SREBP-1c). On the other hand, n-3 LC-PUFA stimulate fatty acid oxidation in the liver (via the activation of peroxisome proliferator activated receptor alpha (PPAR-alpha)). In patients with type 2 diabetes, fish oil dietary supplementation fails to reverse insulin resistance for unclear reasons, but systematically decreases plasma triglycerides. Conversely, in healthy humans, fish oil has many physiological effects. Indeed, fish oil reduces insulin response to oral glucose without altering the glycaemic response, abolishes extraggression at times of mental stress, decreases the activation of sympathetic activity during mental stress and also decreases plasma triglycerides. These effects are encouraging in the perspective of prevention of insulin resistance but further clinical and basic studies must be designed to confirm and complete our knowledge in this field.  相似文献   

17.
Ohtsubo K  Takamatsu S  Minowa MT  Yoshida A  Takeuchi M  Marth JD 《Cell》2005,123(7):1307-1321
Pancreatic beta cell-surface expression of glucose transporter 2 (Glut-2) is essential for glucose-stimulated insulin secretion, thereby controlling blood glucose homeostasis in response to dietary intake. We show that the murine GlcNAcT-IVa glycosyltransferase is required for Glut-2 residency on the beta cell surface by constructing a cell-type- and glycoprotein-specific N-glycan ligand for pancreatic lectin receptors. Loss of GlcNAcT-IVa, or the addition of glycan-ligand mimetics, attenuates Glut-2 cell-surface half-life, provoking endocytosis with redistribution into endosomes and lysosomes. The ensuing impairment of glucose-stimulated insulin secretion leads to metabolic dysfunction diagnostic of type 2 diabetes. Remarkably, the induction of diabetes by chronic ingestion of a high-fat diet is associated with reduced GlcNAcT-IV expression and attenuated Glut-2 glycosylation coincident with Glut-2 endocytosis. We infer that beta cell glucose-transporter glycosylation mediates a link between diet and insulin production that typically suppresses the pathogenesis of type 2 diabetes.  相似文献   

18.
To assess the role of insulin in the control of body weight energy expenditure was measured by indirect calorimetry in eight patients of normal weight with type I diabetes initially while poorly controlled during conventional insulin treatment and later during optimal glycaemic control achieved by using the continuous subcutaneous insulin infusion pump. Their response to seven days of fat supplementation was also assessed and the results compared with those in eight non-diabetic subjects. After a mean of 5.3 months of continuous subcutaneous insulin infusion the diabetic subjects had gained on average 3.5 kg. In the poorly controlled diabetic state the resting metabolic rate was raised but decreased by a mean of 374 kJ (90 kcal) per 24 hours with optimal glycaemic control. The thermic response to infused noradrenaline was reduced by 59% in the diabetic subjects, was not improved by continuous subcutaneous insulin infusion, but was improved when three of the subjects were given metformin in addition. The diabetic subjects had no abnormality in the thermic response to a meal while taking their usual diabetic diet. During fat supplementation, however, this thermic response was reduced when glycaemic control was poor but not when control was precise. Fat supplementation did not alter the resting metabolic rate or the reduced noradrenergic thermic response in the diabetic subjects. These findings suggest that precise glycaemic control could produce weight gain if energy intake remained unaltered, for diabetic subjects do not compensate for the decrease in metabolic rate by an increase in noradrenergic and dietary thermic responses. Also precise glycaemic control using continuous subcutaneous insulin infusion does not correct all the metabolic abnormalities of diabetes mellitus.  相似文献   

19.
Current medical literature suggests that Type 2 diabetes mellitus can becontrolled by diet and hypoglycemic agents or diet and insulin therapy.Nevertheless, adhering to a low glucose dietary regimen remainsproblematic for a majority of patients, and management of the disease isan ongoing source of frustration for physicians and other providers.While calling for more research on the physician's experience oftreating chronic conditions like diabetes, the authors argue that muchof the current frustration stems from the different frames orexplanatory models that physicians and patients use to understand thedisease. By comparing physician narratives collected in several clinicalcontexts (e.g., medical lectures, precepting sessions, patient caresessions and personal interviews) with patient stories obtainedprimarily through narrative interviews, the authors highlight crucialdifferences in the way physicians and patients experience and thinkabout the disease. In particular, the authors highlight differencesbetween physicians and patients across five dimensions: etiology,symptoms/signs, factors which affect blood sugar, ideal blood sugar,and future prospects. In concluding, the authors sketch out elements ofa theory of clinical practice involving diabetes care. Data for thestudy was collected at two family practice training sites in Chicago.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号