首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chick ciliary ganglion neurons grown in dissociated cell culture have a high affinity uptake mechanism for choline that has the properties expected for cholinergic neurons. The uptake has an apparent Km of ca. 0.3 μM and is blocked by addition of 10 μM hemicholinium-3 or replacement of Na+ by Li+ in the uptake medium. When the choline uptake mechanism is used to label ciliary ganglion neuron-myotube cultures autoradiographically, over 99% of the neurons are labeled. A few cells with neuronal morphologies in such cultures (<1%) are labeled by γ-[3H]aminobutyric acid uptake. The number of [3H]choline-labeled neurons and the amount of Na+-dependent choline uptake is the same for ciliary ganglion neurons grown with and without skeletal myotubes. Rat superior cervical ganglion neurons, grown in cell culture under conditions that induce them to synthesize acetylcholine and form cholinergic synapses, are labeled by [3H]choline uptake, though not as heavily as ciliary ganglion neurons. In contrast, chick dorsal root ganglion neurons, a presumed population of noncholinergic neurons, are not labeled by [3H]choline uptake. Thus high affinity choline uptake can be used to label autoradiographically the cholinergic neurons tested, while at least one population of noncholinergic neurons remains unlabeled.  相似文献   

2.
Acetylcholine (ACh) synthesis was examined in cultures of chick spinal cord cells to follow the development of the cholinergic neurons. The cells, prepared from 4-day-old embryonic chick spinal cords, were grown either alone in dissociated cell cultures (SC cultures) or with chick myotubes (SC-M cultures). ACh synthesis was measured by incubating the cultures in [3Hcholine and using high-voltage paper electrophoresis to quantitate the amount of [3H]ACh present in cell extracts prepared from the labeled cultures. The amount of [3H]ACh synthesized in SC-M cultures was strictly proportional to the number of spinal cord cells used to prepare the cultures, and was linear with the time of incubation in [3H]choline for periods up to 1 hr. Maximal rates of synthesis were observed with [3H]choline concentrations in excess of 100 μM. Such rates for 1-week-old SC-M cultures were approximately 10–20 pmoles of [3H]ACh/hr/105 spinal cord cells. Studies on the stability of the intracellular [3H]ACh revealed the presence of a major pool with a half-time of 20–30 min. A second, small pool decayed more rapidly. No detectable [3H]ACh was spontaneously released from the cells, suggesting that most of the decay represented intracellular degradation. Development of cholinergic neurons as monitored by [3H]ACh synthesis continued over a 2-week period in SC-M cultures and paralleled general cell growth. When examined at 1 week, SC-M cultures had about a 50% greater capacity for [3H]ACh synthesis and 60% more choline acetyltransferase activity than did SC cultures. No difference was observed in the stability of the [3H]ACh formed for the two types of cultures at 1 week, and no further difference was observed in the rates of [3H]ACh synthesis at 2 weeks. Growth of SC cultures in medium containing different amounts of chick embryo extract (2–10%) or in medium with fetal calf serum (10%) instead of extract produced only small differences in the measured rates of [3H]ACh synthesis. Thus chick spinal cord cells can undergo some of the early stages of cholinergic development in cell culture without sustained contact with skeletal myotubes, one of the normal postsynaptic target cells for the cholinergic neuron population. No absolute requirement for muscle factors was revealed under these conditions, although such factors may have been provided by other cell types in the spinal cord population or may have been present in other additions to the culture medium.  相似文献   

3.
Summary The histogenesis of the dorsal root ganglia of chick embryos (ages 3 to 9 days) was followed in three different tissue culture systems. Organotypic explants included dorsal root ganglia connected to the lumbosacral segment of the spinal cord or isolated explants of the contralateral ganglia. Additionally, dissociated monolayer cultures of ganglia tissue were established. The gradual differentiation of progenitor neuroblasts into distinct populations of large ventrolateral and small dorsomedial neurons was observed in vivo and in vitro. Neurites developed after 3 days in the presence or absence of nerve growth factor in the medium. In contrast, autoradiographic analysis indicates that [3H]thymidine incorporation in neuronal cultures differed significantly from intact embryos. In vivo, the number of neuronal progenitor cells labeled with [3H]thymidine decreased in older embryos; in vitro, uptake of [3H]thymidine label was not observed in ganglionic progenitor cells regardless of the age of the donor embryo or the type of culture system. Lack of proliferation in ganglionic progenitor cells was not due to degeneration because vital staining and uptake of [3H]deoxyglucose indicated that neurons were metabolically active. Furthermore, the block in mitotic activity in vitro was limited to presumptive ganglionic neuronal cells. In the ependyma of the spinal cord segment connected to the dorsal root ganglia, neuronal progenitor cells were heavily labeled as were non-neuronal cells within both spinal cord and ganglia. Our results suggest that in vitro conditions can promote the differentiation of sensory neurons from early embryos (E3.5–4.5) without proliferation of progenitor cells.  相似文献   

4.
Spinal cord-myotube cultures prepared with dissociated embryonic chick spinal cord cells and myoblasts exhibit a high affinity mechanism for accumulating choline. The uptake mechanism has a Km of 3.4 ± 0.5 μM (7) and a Vm of 40.0 ± 0.1 (7) pmoles/min/mg of protein (mean ± SEM; number of determinations in parentheses). It is inhibited 90–95% by 10 μM hemicholinium-3 or by replacement of Na+ in the incubation solution with Li+. Part of the choline (10–20%) accumulated by the high affinity system is converted to acetylcholine (ACh). Uptake studies on spinal cord cells and myotubes grown separately demonstrate that the spinal cord cells can account for virtually all of the choline uptake observed in the mixed cultures. Myotubes are unnecessary under these conditions for the expression of the high affinity uptake mechanism by spinal cord cells. Neurons are not the only cell type in culture to exhibit high affinity choline uptake. Chick fibroblasts in both rapidly growing and stationary phase can accumulate choline with kinetics similar to those observed for the high affinity uptake by spinal cord cells. Little if any of the choline accumulated by fibroblasts, however, is converted to ACh. In most uptake studies with spinal cord cells, contributions from fibroblasts were minimized by carrying out the analysis at a time when few non-neuronal cells were present in the spinal cord cultures. These observations suggest that a population of chick central nervous system (CNS) neurons develop a high affinity choline uptake mechanism in cell culture that has many of the properties described for uptake by cholinergic neurons in vivo and that at least part of the choline accumulated by the system can be used for neurotransmitter synthesis.  相似文献   

5.
Selective Expression of Factors Preventing Cholinergic Dedifferentiation   总被引:2,自引:1,他引:1  
Chicken retina neurons from 8-9-day-old embryos developed prominent cholinergic properties after several days in stationary dispersed cell (monolayer) culture. These cells accumulated [3H]choline by a high-affinity, hemicholinium-sensitive transport system, converted [3H]choline to [3H]-acetylcholine [( 3H]ACh), released [3H]ACh in response to depolarization stimuli, and developed choline acetyltransferase (ChAT) activity to levels comparable to those of the intact retina. The cholinergic state, however, was not permanent. After 7 days in culture, the capacity for [3H]ACh release decreased drastically and continued to diminish with longer culture periods. Loss of this capacity seemed not to be due to loss of cholinergic neurons, because high-affinity choline uptake was unchanged. However, a substantial decrease of ChAT activity was observed as a function of culture age, and probably accounted for the low level of ACh synthesis in long-lasting cultures. The loss of ChAT activity could be prevented in at least two different ways: (a) Maintaining the neurons in rotary (aggregate) rather than stationary culture completely blocked the loss of enzyme activity and gave a developmental profile identical to the known "in situ" pattern of differentiation; and (b) Conditioned medium from aggregate cultures significantly reduced the drop in ChAT activity of neurons maintained in stationary, dispersed cell cultures. Activity that stabilized cholinergic differentiation was nondialyzable, heat-sensitive, and not mimicked by functional nerve growth factor. Production of activity by aggregates was developmentally regulated; medium obtained from aggregates after 3 days in culture had no effect on cholinergic differentiation, whereas medium obtained from aggregates between 6 and 10 days in culture produced a fivefold increase of ChAT in monolayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The uptake of [3H]norepinephrine ([3H]NE) was studied in dissociated brain cell cultures prepared from 8-day-old chick embryos using the whole brain (minus optic lobes). Uptake of [3H]NE, 5×10–9 M, 10 min incubation, in freshly dissociated noncultured embryonic chick brain cells, was detected in 6-day-old embryos; it was temperature and drug (cocaine, metanephrine) sensitive and increased with brain development. In cultured cells, which were assayed at various days in culture, the increase in [3H]NE accumulation per culture was less than that seen in freshly dissociated noncultured embryonic cells. When [3H]NE uptake was expressed per mg protein, a decrease with days in culture was observed, reflecting perhaps a dilution of growth or proliferation of cells not accumulating NE. Metanephrine, 5×10–6 M, an inhibitor of extraneuronal uptake, inhibited [3H]NE in 5-day-old cultures whereas desmethylimipramine, an inhibitor of neuronal uptake, inhibited [3H]NE uptake in 15- and 20-day-old cultures. Cocaine, another neuronal inhibitor, inhibited [3H]NE at 10 and 15 days only. We interpret these findings to suggest that during early growth in culture most neuroblasts accumulate NE nonspecifically and, as neuronal maturation proceeds, NE accumulation becomes specific.  相似文献   

7.
Acetylcholine Synthesis by Adult Bovine Adrenal Chromaffin Cell Cultures   总被引:1,自引:1,他引:0  
Adrenal chromaffin cells normally synthesize and release catecholamines. In the present study, [3H]acetylcholine synthesis and another characteristic of cholinergic neurons, [3H]choline uptake, were studied in cultures of adult bovine adrenal chromaffin cells. Chromaffin cell cultures took up [3H]choline from the medium and acetylated the [3H]choline to form [3H]acetylcholine. The rate of [3H]acetylcholine synthesis increased after 19 days in culture and continued to increase up to 28 days in culture. [3H]Acetylcholine synthesis could be increased by stimulating the cells with a depolarizing concentration of K+. The ability for K+ to stimulate synthesis of [3H]acetylcholine developed only after 28 days in culture. [3H]Choline was taken up by the cultures through a single mechanism with a high (to intermediate) affinity for choline. [3H]Choline uptake was enhanced by Na+ omission in day-14 cultures, but was at least partially Na+-dependent in day-29 cultures. Hemicholinium-3 (IC50 less than 10 muM) inhibited [3H]choline uptake into chromaffin cell cultures. It is concluded that bovine adrenal chromaffin cells, maintained in culture, are able to exhibit cholinergic properties and this capacity is retained even by the mature adult cell.  相似文献   

8.
Neuronal-enriched cultures were prepared from 8-day-old chick embryo cerebral hemispheres and exposed to ethanol (50 mM) from day 4 to 8 in culture. At day 8, both control and ethanol-treated cultures were processed for [3H]choline uptake in situ. Uptake was performed on cultures containing either Na+-plus or Na+-free (Li+) HEPES buffer. Total choline uptake as well as Na+-dependent and Na+-independent choline uptake were calculated. The Km and Vmax were calculated using the Lineweaver-Burke analysis. Our analysis of the data revealed that ethanol-treated cultures exhibited two values for Vmax, one similar to that found in control cultures and one significantly lower than controls. No differences were observed in Km values between control and ethanol-treated cultures. We interpret the low Vmax to represent a population of cholinergic neurons which have been arrested at an immature stage as a result of ethanol insult.  相似文献   

9.
Tor 23 is a monoclonal antibody, generated against cholinergic terminals of theTorpedo californica, that has been found to bind to the extracellular surface of cholinergic neurons in a variety of tissues. This study shows that Tor 23 inhibits: 1) high affinity [3H]hemicholinium-3 binding to detergent-solubilized membranes prepared from rat neocortices; 2) high affinity [3H]choline uptake in rat neocortical and striatal P2 preparations; and 3) [3H]acetylcholine synthesis in isolated nerve terminals. Tor 23 does not appear to affect low affinity [3H]choline uptake or [3H]acetylcholine release. These results are consistent with the hypothesis that Tor 23 may bind to nerve terminal high affinity choline transporters in the rat brain.  相似文献   

10.
The developmental influence of neuron-target interaction upon transmitter synthesis from labeled precursor and the capacity to release labeled transmitter were examined in dispersed cell cultures of embryonic ciliary ganglion neurons by comparing cultures of neurons plated alone and neurons plated upon pectoral myotubes. Of the total ACh synthesized from radiolabeled choline by neurons plated alone, more than half is via a Na+-dependent path, but a larger fraction of the synthesis is Na+ insensitive in culture than in mature neurons in vivo. In addition, at 1 week in culture the neurons lacking target failed to significantly increase ACh synthesis from the labeled choline in response to a previous high [K+]0 depolarization. Synthetic responsiveness to depolarization is a characteristic of mature nerve terminals in this preparation. One week after plating neurons onto myotube cultures, synthesis of ACh from the exogenous precursor is double that of sibling cultures lacking muscle, and prior depolarization with [K+]0 results in an increase in labeled product. Release from the labeled transmitter pool by the neurons with myotubes was also enhanced. [3H]ACh release elicited by depolarization via a Ca2+-dependent mechanism was more than fivefold higher in the cocultures. The influence of coculture with myotubes upon neuronal development is not duplicated by the neurons themselves despite formation of apparent interneuronal synapses (G. Crean, G. Pilar, J. Tuttle, and K. Vaca, 1982, J. Physiol. (London). 331, 87-104), by "fibroblasts" or medium conditioned over myotube cultures. Neurons under these conditions neither increase synthesis of [3H]ACh in response to a prior depolarization nor demonstrate enhanced basal [3H]ACh synthesis and release. Thus, coculture of embryonic ciliary ganglion neurons with a striated muscle target has a somewhat specific inductive effect, enhancing the capacity for neuronal [3H]ACh synthesis and release toward mature levels. This influence of a readily accessible target upon ciliary neuron cholinergic development in vitro may reflect a normal neuromuscular interaction occurring during embryogenesis.  相似文献   

11.
Dissociated retinal cells from 8-day-old chick embryos were cultivated in serum-containing and in defined serum-free media. Under the latter conditions, and using polylysine as a substrate, the proliferation of glial cells was almost completely prevented, and pure (>90%) neuronal cultures could be maintained for up to 7 days in vitro. The specific but not the total activities of choline acetyltransferase and of the nicotinic and the muscarinic acetylcholine receptor were increased under serum-free culture conditions. Autoradiographic studies with [125I]α-bungarotoxin, a selective ligand for nicotinic cholinergic receptors, showed that serum-free culture conditions may constitute a useful tool for identifying biochemically different types of retinal neurons in tissue culture.  相似文献   

12.
We have investigated the uptake and release of [3H]gamma-aminobutyric acid (GABA) by embryonic chick spinal cord cells maintained in culture. Cells dissociated from 4- or 7-d-old embryos were studied between 1 and 3 wk after plating. At 3 degrees C, [3H]GABA was accumulated by a high affinity (Km approximately equal to 4 microM) and a low affinity (Km approximately equal to 100 microM) mechanism. The high affinity transport was markedly inhibited in low Na+ media, by ouabain, at 0 degrees C, and by 2,4-diaminobutyric acid. Autoradiography, after incubation in 0.1 microM [3H]GABA, showed that approximately 50% (range = 30-70%) of the multipolar cells were labeled. These cells were neurons rather than glia; action potentials and/or synaptic potentials were recorded in cells subsequently found to be labeled. Non-neuronal, fibroblast-like cells and co-cultured myotubes were not labeled under the same conditions. The fact that not all of the neurons were labeled is consistent with the suggestion, based on studies of intact adult tissue, that high affinity transport of [3H]GABA may be unique to neurons that use GABA as a neurotransmitter. Our finding that none of fifteen physiologically identified cholinergic neurons, i.e., cells that innervated nearby myotubes, were heavily labeled after incubation in 0.1 microM [3H]GABA is significant in this regard. The newly taken up [3H]GABA was not metabolized in the short run. It was stored in a form that could be released when the neurons were depolarized in a high K+ (100 mM) medium. As expected for a neurotransmitter, the K+-evoked release was reversibly inhibited by reducing the extracellular Ca++/Mg++ ratio.  相似文献   

13.
Enrichment of spinal cord cell cultures with motoneurons   总被引:9,自引:2,他引:7  
Spinal cord cell cultures contain several types of neurons. Two methods are described for enriching such cultures with motoneurons (defined here simply as cholinergic cells that are capable of innervating muscle). In the first method, 7-day embryonic chick spinal cord neurons were separated according to size by 1 g velocity sedimentation. It is assumed that cholinergic motoneurons are among the largest cells present at this stage. The spinal cords were dissociated vigorously so that 95-98% of the cells in the initial suspension were isolated from one another. Cells in leading fractions (large cell fractions: LCFs) contain about seven times as much choline acetyltransferase (CAT) activity per unit cytoplasm as do cells in trailing fractions (small cell fractions: SCFs). Muscle cultures seeded with LCFs develop 10-70 times as much CAT as cultures seeded with SCFs and six times as much CAT as cultures seeded with control (unfractionated) spinal cord cells. More than 20% of the large neurons in LCF-muscle cultures innervate nearby myotubes. In the second method, neurons were gently dissociated from 4-day embryonic spinal cords and maintained in vitro. This approach is based on earlier observations that cholinergic neurons are among the first cells to withdraw form the mitotic cycle in the developing chick embryo (Hamburger, V. 1948. J. Comp. Neurol. 88:221-283; and Levi-Montalcini, R. 1950. J. Morphol. 86:253-283). 4-Day spinal cord-muscle cultures develop three times as much CAT as do 7-day spinal cord-muscle plates, prepared in the same (gentle) manner. More than 50% of the relatively large 4-day neurons innervate nearby myotubes. Thus, both methods are useful first steps toward the complete isolation of motoneurons. Both methods should facilitate study of the development of cholinergic neurons and of nerve-muscle synapse formation.  相似文献   

14.
The sodium-dependent high affinity choline uptake into synaptosomes from rat brain has been studied after in vivo treatments which would alter the activity of cholinergic neurons. We utilized a number of treatments to reduce the activity of cholinergc neurons in the brain. Administration of pentobarbital (65 mg/kg), chloral hydrate (40 mg/kg) and γbutyrelactone (750 mg/kg) caused a 50-80% reduction in sodium-dependent high affinity choline uptake in several brain regions (30 min). This depression was not found 24 h after injection. Interruption of the cholinergic septal-hippocampal or habenuleinterpeduncular tracts by lesions (10 min-1 h) also caused a similar, large reduction in sodium-dependent high affinity choline uptake in the hippocampus and the interpeduncular nucleus respectively. We reversed the inactivity after pentobarbital administration by direct electrical stimulation of the cholinergic septal-hippocampal tract. Stimulation (40 Hz) for 10-15 min completely reversed the depression in sodium-dependent high affinity choline uptake. Stimulation at lower frequencies or for shorter times caused a partial reversal. Administration of pentylenetetrazol (75 mg/kg), a convulsant, was utilized to increase the activity of central cholinergic neurons. After drug administration, we found a large (60%) increase in sodium-de-pendent high affinity choline uptake. This increase was not found in the hippocampus when cholinergic afferents were interrupted by septal lesion prior to drug administration. We also examined the uptake after administration of cholinergic drugs. Oxotremorine (0.75 mg/kg), a muscarinic agonist which reduces acetylcholine release and turnover, caused a reduction in uptake. On the other hand, administration of scopolamine (5 mg/kg), a cholinergic antagonist which increases acetylcholine turnover, caused an increase in sodium-dependent high affinity choline uptake. Addition of any drug utilized, drectly to uptake samples, did not alter uptake. We examined the conversion of [3H]choline to [3H]acetylcholine in hippocampal synaptosomes after septal lesion, pentylenetetrazol administration and in untreated controls. In all cases, 60-70% of the total sodium-dependent tritium content was present as [3H]acetylcholine. Evidence was presented that homoexchange is not or is less involved in choline uptake than in GABA uptake. A kinetic analysis of sodium-dependent high affinity choline uptake was performed after all treatments. We found changes in Vmax, after all treatments, which were consistently in the same direction as the alterations in activity. The proposal is made that the sodium-dependent high affinity choline uptake is coupled to cholinergic activity in such a way as to regulate the entry of choline for the maintenance of acetylcholine synthesis. The findings also lead us to propose that sodium-dependent high affinity choline uptake in vitro be utilized as a rapid, relative measure of the activity of cholinergic nerve terminals in vivo.  相似文献   

15.
We report here on the binding properties of [3H]hemicholinium-3, a selective inhibitor of the high-affinity choline uptake process, to human brain membranes. Under the assay conditions described, the binding of [3H]hemicholinium-3 exhibited a dependency of physiological conditions on pH, temperature, and NaCl concentrations. Striatal binding proved to be specific, to a single site, saturable, and reversible, with an apparent KD of 10 nM and a Bmax of 82 fmol/mg of protein. [3H]Hemicholinium-3 specific binding exhibited a pharmacological profile and an ionic dependency suggestive of physiologically relevant interactions and comparable with those reported for the high-affinity choline uptake. Moreover, specific [3H]hemicholinium-3 binding exhibited an uneven regional distribution: striatum much greater than nucleus basalis greater than spinal cord much greater than midbrain = cerebellum greater than or equal to hippocampus greater than neocortex = anterior thalamus greater than posterior thalamus much much greater than white matter. This distribution closely corresponds to the reported activity of both enzymatic cholinergic presynaptic markers and high-affinity choline uptake in mammalian brain. There are no significant differences between these results and those previously found in the rat brain using this radioligand. Our results demonstrate, for the first time, the presence of [3H]hemicholinium-3 binding sites in human brain and strongly support the proposal that this radioligand binds to the carrier site mediating the high-affinity choline uptake process on cholinergic neurons. Thus, [3H]hemicholinium-3 binding may be used in postmortem human brain as a selective and quantifiable marker of the presynaptic cholinergic terminals.  相似文献   

16.
Dissociated sympathetic neurons from the neonatal rat, grown in cell culture in the virtual absence of other cell types, can develop many of the properties expected of differentiated adrenergic neurons including the ability to synthesize and accumulate catecholamines (CA)2. However, in the presence of high concentrations of appropriately conditioned medium (CM), the cultures develop the ability to synthesize and accumulate acetylcholine (ACh); correspondingly, their ability to synthesize CA decreases. In this paper several developmental aspects of the CM effect are described. The time course of development of cultures grown with or without CM was followed using synthesis and accumulation of [3H]CA from [3H]tyrosine and production of [3H]ACh from [3H]choline as assays for adrenergic and cholinergic differentiation. The ability to produce CA or ACh developed along parallel time courses in the two sets of cultures, rising primarily during the second week in vitro and reaching a plateau during the fourth week. When CM was used as a cholinergic developmental signal, the sympathetic neurons showed a decreasing response to addition of CM as they matured adrenergically; addition of CM during the third or fourth 10 days in vitro was not as effective in inducing ACh production as addition during the first or second 10 days. Similarly, removal of CM at various times from cultures previously grown in CM showed that the cholinergic induction caused by CM was not easily reversible in older cultures. Thus, as with the adrenergic decision, the cholinergic decision becomes less reversible as the phenotype becomes fully expressed.  相似文献   

17.
High affinity transport of choline into synaptosomes of rat brain   总被引:33,自引:13,他引:20  
—The accumulation of [3H]choline into synaptosome-enriched homogenates of rat corpus striatum, cerebral cortex and cerebellum was studied at [3H]choline concentrations varying from 0.5 to 100 μm . The accumulation of [3H]choline in these brain regions was saturable. Kinetic analysis of the accumulation of the radiolabel was performed by double-reciprocal plots and by least squares iterative fitting of a substrate-velocity curve to the data. With both of these techniques, the data were best satisfied by two transport components, a high affinity uptake system with Km. values of 1.4 μM (corpus striatum), and 3.1 μM (ceμ(cerebral cortex) and a low affinity uptake system with respective Km. values of 93 and 33 μM for these two brain regions. In the cerebellum choline was accumulated only by the low affinity system. When striatal homogenates were fractionated further into synaptosomes and mitochondria and incubated with varying concentrations of [3H]choline, the high affinity component of choline uptake was localized to the synaptosomal fraction. The high affinity uptake system required sodium, was sensitive to various metabolic inhibitors and was associated with considerable formation of [3H]acetylcholine. The low affinity uptake system was much less dependent on sodium, and was not associated with a marked degree of [3H]acetylcholine formation. Hemicholinium-3 and acetylcholine were potent inhibitors of the high affinity uptake system. A variety of evidence suggests that the high affinity transport represents a selective accumulation of choline by cholinergic neurons, while the low affinity uptake system has some less specific function.  相似文献   

18.
CHOLINE: SELECTIVE ACCUMULATION BY CENTRAL CHOLINERGIC NEURONS   总被引:20,自引:8,他引:12  
Abstract— Most of the cholinergic input to the hippocampus was destroyed by placement of lesions in the medial septal area. In animals with such lesions we found that hippocampal ChAc activity was reduced by 85–90% and endogenous acetylcholine levels were reduced by more than 80 %. When hippocampal synaptosomes from animals with lesions were incubated with [3H]choline at concentrations of 7.5 nm, 1 μm and 10 μm there was approximately a 60 % reduction in the uptake of [3H]choline, suggesting that cholinergic nerve endings were mainly responsible for [3H]choline uptake. At 0.1 mm concentrations of [3H]choline, there was only a 25 % reduction of choline uptake, suggesting that at higher concentrations of choline there was more nonspecific uptake. The uptake of radiolabelled tryptophan, glutamate and GABA were only slightly or not at all affected by the lesions. There was a significant reduction of uptake of radiolabelled serotonin and norepinephrine, since known monoaminergic tracts were disrupted. Choline uptake was reduced only in brain regions in which cholinergic input was interrupted (i.e. the cerebral cortex and hippocampus) and remained unchanged in other regions (i.e. the cerebellum and striatum). The time course of the reduction in choline uptake was similar to that of the reductions in ChAc activity and endogenous ACh levels; there was no decrease at 1 day, a significant decrease at 2 days, and the maximal decrease at 4 days postlesion. There was a close correlation among choline uptake, ChAc activity and ACh levels in the four brain regions examined (i.e. the striatum, cerebral cortex, hippocampus and cerebellum). Our results suggest that when hippocampal synaptosomes (and perhaps synaptosomes from other brain areas as well) are incubated in the presence of choline, at concentrations of 10 μm m or lower, then cholinergic nerve endings are responsible for the bulk of the choline accumulated by the tissue.  相似文献   

19.
The depolarization-induced, calcium-dependent release of [3H]ACh from hippocampal synaptosomes was studied in a superfusion system. Release increased, with increasing depolarization. Barium and strontium effectively substituted for calcium during the depolarization, but magnesium inhibited the release. Releasable [3H]ACh is derived from the sodium-dependent component of the [3H]choline uptake which points out the physiologic importance of sodium-dependent choline transport. It is concluded that [3H]ACh release in this system has the same properties as neurotransmitter release in many other systems. Previous studies have shown that treatments which alter the activity of cholinergic neurons in vivo result in parallel changes in sodium-dependent choline uptake in vitro. When synaptosomes were utilized from animals treated to reduce cholinergic activity, there was a reduced release following the reduced uptake. Conversely, when synaptosomes were taken from animals treated to increase sodium-dependent choline uptake, there was an increase in the release. It is concluded that the changes in sodium-dependent choline uptake in vitro consequent to changes in neuronal activity in vivo result in parallel changes in releasable ACh. A comparison was made between the effect of a number of ions and agents on release and their effect on the in vitro, depolarization-induced activation of sodium-dependent choline uptake. Barium and strontium, ions which substitute for calcium in the release process, support the in vitro activation of uptake. Vinblastine and Bay a 1040, compounds which block release, prevented the in vitro activation of sodium-dependent choline uptake. However, magnesium blocked release in a dose-dependent manner, but did not block the activation of uptake in vitro. Rather, magnesium substituted for calcium and supported the activation of uptake in a dose-dependent fashion. It is concluded that acetylcholine release is not necessary for the activation of choline uptake.  相似文献   

20.
The aziridinium ion of ethylcholine (AF64A) is a neurotoxin that has demonstrated selectivity for cholinergic neurons. Unilateral stereotaxic injection of AF64A into the caudate-putamen of rats, resulted in a decrease in dopamine D-2 receptors as evidenced by a decrease in [3H]-sulpiride binding. Dopamine D-1 receptors, labeled with [3H]-SCH 23390, were unchanged. The efficacy of the lesion was demonstrated by the reduction of Na+-dependent high affinity choline uptake sites labeled with [3H]-hemicholinium-3. These data indicate that a population of D-2 receptors are postsynaptic on cholinergic interneurons within the striatum of rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号