首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dermatan sulfate mediates the blood coagulation cascade by binding to heparin cofactor II and potentiating the antithrombin activity. In order to explore another function of dermatan sulfate, a dermatan sulfate affinity column was prepared from biotinylated dermatan sulfate and Streptavidin Sepharose. When human plasma was applied on the dermatan sulfate column, factor H was bound and cleaved. The cleavage products, a 30-kDa N-terminal fragment and a 120-kDa fragment, were eluted from the column with 500 mM NaCl and detected after Western blotting with anti-factor H. The bond between the tandem arginine residues in the sixth domain of factor H was cleaved. When purified factor H was applied on the column, the factor H was not cleaved and was recovered from the column as an intact 150-kDa fraction. The finding that dermatan sulfate-mediated cleavage of factor H was inhibited by (p-amidinophenyl) methanesulfonyl fluoride, but not N-ethylmaleimide or EDTA, indicates that a serine protease in the plasma was activated on the dermatan sulfate column and factor H was cleaved without intervention of the plasma protease inhibitors. Amidase activity was detected in the effluent from the dermatan sulfate column but was abolished by pretreatment of the plasma with dermatan sulfate. Therefore, dermatan sulfate participates in the activation of a protease as well as having the protease inhibitory action.  相似文献   

2.
Heparin affin regulatory peptide (HARP) is a polypeptide belonging to a family of heparin binding growth/differentiation factors. The high affinity of HARP for heparin suggests that this secreted polypeptide should also bind to heparan sulfate proteoglycans derived from cell surface and extracellular matrix defined as extracellular compartments. Using Western blot analysis, we detected HARP bound to heparan sulfate proteoglycans in the extracellular compartments of MDA-MB 231 and MC 3T3-E1 as well as NIH3T3 cells overexpressing HARP protein. Heparitinase treatment of BEL cells inhibited HARP-induced cell proliferation, and the biological activity of HARP in this system was restored by the addition of heparin. We report that heparan sulfate, dermatan sulfate, and to a lesser extent, chondroitin sulfate A, displaced HARP bound to the extracellular compartment. Binding analyses with a biosensor showed that HARP bound heparin with fast association and dissociation kinetics (kass = 1.6 x 10(6) M-1 s-1; kdiss = 0.02 s-1), yielding a Kd value of 13 nM; the interaction between HARP and dermatan sulfate was characterized by slower association kinetics (kass = 0.68 x 10(6) M-1 s-1) and a lower affinity (Kd = 51 nM). Exogenous heparin, heparan sulfate, and dermatan sulfate potentiated the growth-stimulatory activity of HARP, suggesting that corresponding proteoglycans could be involved in the regulation of the mitogenic activity of HARP.  相似文献   

3.
High affinity interactions were studied between the basement membrane form of heparan sulfate proteoglycan (HSPG) and the 695-, 751-, and 770-amino acid Alzheimer amyloid precursor (AAP) proteins. Based on quantitative analyses of binding data, we identified single binding sites for the HSPG on AAP-695 (Kd = 9 x 10(-10) M), AAP-751 (Kd = 10 x 10(-9) M), and AAP-770 (Kd = 9 x 10(-9) M). It is postulated that the "Kunitz" protease inhibitor domain which is present in AAP-751 and -770 reduces the affinity of AAPs for the HSPG through steric hindrance and/or conformational alteration. HSPG binding was inhibited by heparin and dextran sulfate, but not by dermatan or chondroitin sulfate. HSPG protein core, obtained by heparitinase digestion, also bound to the beta-amyloid precursor proteins with high affinity, indicating that the high affinity binding site is constituted by the polypeptide chain rather than the carbohydrate moiety. The effects of various cations on these interactions were also studied. Our results suggest that specific interactions between the AAP proteins and the extracellular matrix may be involved in the nucleation stages of Alzheimer's disease type amyloidogenesis.  相似文献   

4.
FGF-7 is induced after injury and induces the proliferation of keratinocytes. Like most members of the FGF family, the activity of FGF-7 is strongly influenced by binding to heparin, but this glycosaminoglycan is absent on keratinocyte cell surfaces and minimally present in the wound environment. In this investigation we compared the relative activity of heparan sulfate and chondroitin sulfate B (dermatan sulfate), glycosaminoglycans that are present in wounds. A lymphoid cell line (BaF/KGFR) containing the FGF-7 receptor (FGFR2 IIIb) was treated with FGF-7 and with various glycosaminoglycans. FGF-7 did not support cell proliferation in the absence of glycosaminoglycan or with addition of heparan sulfate or chondroitin sulfate A/C but did stimulate BaF/KGFR division in the presence of dermatan sulfate or highly sulfated low molecular weight fractions of dermatan. Dermatan sulfate also enabled FGF-7-dependent phosphorylation of mitogen-activated protein kinase and promoted binding of radiolabeled FGF-7 to FGFR2 IIIb. In addition, dermatan sulfate and FGF-7 stimulated growth of normal keratinocytes in culture. Thus, dermatan sulfate, the predominant glycosaminoglycan in skin, is the principle cofactor for FGF-7.  相似文献   

5.
Herndon  ME; Stipp  CS; Lander  AD 《Glycobiology》1999,9(2):143-155
The method of affinity coelectrophoresis was used to study the binding of nine representative glycosaminoglycan (GAG)-binding proteins, all thought to play roles in nervous system development, to GAGs and proteoglycans isolated from developing rat brain. Binding to heparin and non-neural heparan and chondroitin sulfates was also measured. All nine proteins-laminin-1, fibronectin, thrombospondin-1, NCAM, L1, protease nexin-1, urokinase plasminogen activator, thrombin, and fibroblast growth factor-2-bound brain heparan sulfate less strongly than heparin, but the degree of difference in affinity varied considerably. Protease nexin-1 bound brain heparan sulfate only 1.8- fold less tightly than heparin (Kdvalues of 35 vs. 20 nM, respectively), whereas NCAM and L1 bound heparin well (Kd approximately 140 nM) but failed to bind detectably to brain heparan sulfate (Kd>3 microM). Four proteins bound brain chondroitin sulfate, with affinities equal to or a few fold stronger than the same proteins displayed toward cartilage chondroitin sulfate. Overall, the highest affinities were observed with intact heparan sulfate proteoglycans: laminin-1's affinities for the proteoglycans cerebroglycan (glypican-2), glypican-1 and syndecan-3 were 300- to 1800-fold stronger than its affinity for brain heparan sulfate. In contrast, the affinities of fibroblast growth factor-2 for cerebroglycan and for brain heparan sulfate were similar. Interestingly, partial proteolysis of cerebroglycan resulted in a >400- fold loss of laminin affinity. These data support the views that (1) GAG-binding proteins can be differentially sensitive to variations in GAG structure, and (2) core proteins can have dramatic, ligand-specific influences on protein-proteoglycan interactions.   相似文献   

6.
Dermatan sulfate increases the rate of inhibition of thrombin by heparin cofactor II (HCII) approximately 1000-fold by providing a catalytic template to which both the inhibitor and the protease bind. Dermatan sulfate is a linear polymer of D-glucuronic acid (GlcA) or L-iduronic acid (IdoA) alternating with N-acetyl-D-galactosamine (GalNAc) residues. Heterogeneity in dermatan sulfate results from varying degrees of O-sulfation and from the presence of the two types of uronic acid residues. To characterize the HCII-binding site in dermatan sulfate, we isolated the smallest fragment of dermatan sulfate that bound to HCII with high affinity. Dermatan sulfate was partially N-deacetylated by hydrazinolysis, cleaved with nitrous acid at pH 4, and reduced with [3H]NaBH4. The resulting fragments, containing an even number of monosaccharide units with the reducing terminal GalNAc converted to [3H]2,5-anhydro-D-talitol (ATalR), were size-fractionated and then chromatographed on an HCII-Sepharose column. The smallest HCII-binding fragments were hexasaccharides, of which approximately 6% bound. Based on ion-exchange chromatography, the bound material appeared to comprise a heterogeneous mixture of molecules possessing four, five, or six sulfate groups per hexasaccharide. Subsequently, hexasaccharides with the highest affinity for HCII were isolated by overloading the HCII-Sepharose column. The high-affinity hexasaccharides were fractionated by strong anion-exchange chromatography, and one major peak representing approximately 2% of the starting hexasaccharides was isolated. The high-affinity hexasaccharide was cleaved to disaccharides that were analyzed by anion-exchange chromatography, paper electrophoresis, and paper chromatography. A single disulfated disaccharide, IdoA(2-SO4)----ATalR(4-SO4) was observed, indicating that the hexasaccharide has the following structure: IdoA(2-SO4)----GalNAc(4-SO4)----IdoA(2-SO4)---- GalNAc(4-SO4)----IdoA(2-SO4)----ATalR(4-SO4). Since IdoA(2-SO4)----GalNAc(4-SO4) comprises only approximately 5% of the disaccharides present in intact dermatan sulfate, clustering of these disaccharides must occur during biosynthesis to form the high-affinity binding site for HCII.  相似文献   

7.
Heparan sulfate glycosaminoglycan, isolated from the cell surface of nonadhering murine myeloma cells (P3X63-Ag8653), does not bind to plasma fibronectin, but binds partially to collagen type I, as assayed by affinity chromatography with proteins immobilized on cyanogen bromide-activated Sepharose 4B. Identical results were obtained when myeloma heparan sulfate was cochromatographed, on the same fibronectin and collagen columns, with cell surface heparan sulfates collagen columns, with cell surface heparan sulfates from adhering Swiss mouse 3T3 and SV3T3 cells. These latter heparan sulfates do, however, bind to both fibronectin and collagen, as reported earlier (Stamatoglou, S.C., and J.M. Keller, 1981, Biochim. Biophys. Acta., 719:90-97). Cell adhesion assays established that hydrated collagen substrata can support myeloma cell attachment, but fibronectin cannot. Saturation of the heparan sulfate binding sites on the collagen substrata with heparan sulfate or heparin, prior to cell inoculation, abolished the ability to support cell adhesion, whereas chondroitin 4 sulfate, chondroitin 6 sulfate, and hyaluronic acid had no effect.  相似文献   

8.
Heparin and heparan sulfate binding sites on B-16 melanoma cells   总被引:2,自引:0,他引:2  
We have reported previously that the production of a tumor cell factor that stimulates synthesis of fibroblast collagenase is influenced by a fibroblast-deposited matrix component, possibly heparan sulfate-proteoglycan. In this study, binding sites for heparin and heparan sulfate on mouse B-16 melanoma cells have been demonstrated. Binding of 3H-heparin and 35S-heparan sulfate has been shown to occur to whole cells, isolated membranes, and to a component(s) of detergent extracts of the membranes. Scatchard analysis of binding of 3H-heparin yielded a Kd of 2-5 x 10(-8) M and a Bmax of 0.5 x 10(7) heparin molecules bound per cell. Binding of 35S-heparan sulfate was of at least an order of magnitude lower affinity than heparin, but the Bmax was similar to that for heparin. Competition studies showed that 35S-heparan sulfate binding was inhibited totally by heparin and heparan sulfate and partially by dermatan sulfate, but no inhibition was obtained with hyaluronate or chondroitin sulfate. Binding of 3H-heparin was inhibited totally by heparin but to different extents by preparations of heparan sulfate from different tissue sources. The heparin/heparan sulfate binding activity is a protein(s) because it is destroyed by treatment with trypsin. Binding of 3H-heparin to transblots of the detergent extract of the B-16 cell membranes indicated that at least part of the binding activity is a 14,000-dalton protein.  相似文献   

9.
When human plasma is applied to a dermatan sulfate column, amidase activity is detected in the bound fraction and complement factor H is cleaved [A. Saito, H. Munakata, Factor H is a dermatan sulfate-binding protein: identification of a dermatan sulfate—mediated protease that cleaves factor H, J. Biochem. 137 (2005) 225-233]. Here, the amidase-active fraction was purified by sequential gel filtration and hydroxyapatite chromatography, and the amidase-active protein was identified to be plasma kallikrein by mass spectrometry. The activation of plasma kallikrein was further investigated by Western blotting using plasma deficient in prekallikrein or coagulation factor Xll. The dermatan sulfate column-bound fraction of the prekallikrein- and factor Xll-deficient plasmas did not show any amidase activity and factor H remained intact. Addition of kallikrein, but not activated factor Xll, to factor H purified from plasma resulted in cleavage of factor H. Thus, dermatan sulfate induces contact activation and activates kallikrein-mediated cleavage of FH.  相似文献   

10.
The binding of Apolipoprotein E supplemented triglyceride emulsions to sulfated glycosaminoglycans demonstrated specificity for the carbohydrate polymers. Glucosamine containing glycosaminoglycans with relatively less sulfate had little affinity for the Apo E emulsion whereas those with more sulfate (i.e. heparin and sulfated heparans) effectively bound the emulsion. Galactosamine containing glycosaminoglycans (chondroitin 4 sulfate and dermatan sulfate) demonstrated no binding. The Apo E induced uptake of triglyceride emulsions by hepatocytes was inhibited by highly sulfated polysaccharides (i.e. heparin, dextran sulfate) but other glycosaminoglycans which did not bind the emulsion were ineffective in this inhibition. The same sulfated compounds which inhibited the hepatocyte Apo E emulsion interaction effectively released hepatic lipase from isolated heptic perfusions. Glycosaminoglycan sulfates which did not bind the Apo E supplemented emulsions and did not inhibit hepatocyte association were ineffective in releasing lipase. A heparan mixture isolated from human liver was much less effective in inhibiting Apo E induced association of emulsions with hepatocytes, than heparin. A highly sulfated octasaccharide fraction isolated from bovine liver heparin inhibited more effectively than the human heparans but less than the heparin. Inhibition of Apo E mediated hepatocyte emulsion association was produced by a one hour exposure of the cells to either heparinase or heparanase. The heparanase was more active than the heparinase and both were effective in the presence of protease inhibitors. Enzymes hydrolyzing chondroitin sulfates and hyaluronic acid were ineffective in inhibiting the Apo E induced association. The specific binding of human low density lipoprotein to the hepatocyte was much less effected by the heparanase exposure than the Apo E mediated binding.  相似文献   

11.
Human neuroblastoma cells (Platt) were detached from tissue culture substrata with a Ca2+ chelating agent, and then the suspended cells were extracted with a sodium dodecyl sulfate (SDS)-containing buffer to maximally solubilize their sulfate-radiolabeled proteoglycans. The majority of the high-molecular-weight material in these dissociative extracts was heparan sulfate proteoglycan, which resolves into two heterodisperse size classes upon gel filtration on columns of Sepharose CL4B. After removal of SDS from these extracts by hydrophobic chromatography on Sep-Pak C18 cartridges, extracts were further fractionated on various affinity matrices. All of the sulfate-radiolabeled material eluted as one peak from DEAE-Sephadex ion-exchange columns. In contrast, affinity fractionation on Sepharose columns derivatized with the heparan sulfate-binding protein, platelet factor-4, resolved three major and one minor subsets of these components. The nonbinding fraction contained some heparan sulfate proteoglycan and some chondroitin sulfate. The weak-binding fraction contained principally heparan sulfate proteoglycan, as well as a small amount of chondroitin sulfate proteoglycan; the gel-filtration properties of these proteoglycans before or after alkaline borohydride treatment indicated that they were small in size, containing perhaps 2 to 4 glycosaminoglycan chains. The high-affinity fraction eluted from platelet factor 4-Sepharose was composed entirely of “singlechain” heparan sulfate. A portion of the heparan sulfate proteoglycan of the original extract bound to the hydrophobic affinity matrix, octyl-Sepharose, and this hydrophobic proteoglycan partitioned into the nonbinding and weak-binding fractions of the platelet factor 4-Sepharose affinity columns. These studies reveal that the majority of the proteoglycan made by these neuronal cells in culture is of the heparan sulfate class, is small in size when compared to other characterized proteoglycans, and can be resolved into several overlapping subsets when fractionated on affinity matrices.  相似文献   

12.
Heparin was divided into four fractions on fibronectin-Sepharose. The higher affinity fraction for fibronectin was larger in molecular size, higher in sulfate content and higher in affinity for anti-thrombin III. Together with these heparin fractions, the following three series of heparin samples were examined to compare the affinity for fibronectin-Sepharose: four fractions separated on Sephadex G-100; five fractions separated on antithrombin III-Sepharose, and six partially and completely N-desulfated heparins. The result showed that the affinity of heparin for fibronectin was dependent exclusively on its molecular size, and that an appropriate level of sulfate content in heparin (1.9-2.4 mol/disaccharide) was essential for the affinity. The sulfated preparations of glycosaminoglycans (heparan sulfate, dermatan sulfate and chondroitin 4-sulfate) and neutral polysaccharides (amylose and dextran) having higher sulfate content than heparin were found to display higher affinity for fibronectin than heparin. This suggested that highly sulfated polysaccharides showed potent affinity irrespective of their polysaccharide structure. The sulfated chondroitin 4-sulfate having a sulfate content and molecular size comparable to those of heparin was inferior to heparin with respect to affinity. A competitive dissociation experiment indicated that heparin and other polysulfated polysaccharides share a common binding site on the fibronectin molecule.  相似文献   

13.
Interactions of bovine follicular fluid glycosaminoglycans (GAGs) with extracellular matrix (ECM) components fibronectin and laminin and with low-density lipoproteins (LDL) were examined using affinity chromatography. Glycosaminoglycans from small (diameter less than 5 mm) and large (diameter 11-20 mm) follicles were isolated from follicular fluid. The dermatan sulphate or heparan sulphate from small or large follicles was applied to Fn-, Lm- or LDL-Sepharose columns. Portions of each fraction of the bound or unbound GAG were then subjected to gel filtration h.p.l.c. for quantification. The binding interaction between dermatan sulphate and fibronectin was significantly greater than between heparan sulphate and fibronectin (P less than 0.05); the binding interaction between GAGs from small follicles and fibronectin was significantly greater than between GAGs from large follicles (P less than 0.05). The binding interaction between GAGs from small follicles and laminin was significantly greater than for GAGs from large follicles (P less than 0.05). Dermatan sulphate from small follicles bound to fibronectin (42%), laminin (36%) and LDL (14%) and that from large follicles bound to fibronectin (14%), laminin (23%) and LDL (14%). Heparan sulphate from small follicles bound to fibronectin (17%), laminin (15%) and that from large follicles bound to fibronectin (13%), laminin (10%) and LDL (6%). These results suggest that dermatan sulphate, but not heparan sulphate, from follicles at different stages of development exhibit a varied ability to interact with components of the ECM. Both substances bound to LDL comparably in small amounts.  相似文献   

14.
Fibrillin-1 is a major constituent of the 10-12 nm extracellular microfibrils. Here we identify, characterize, and localize heparin/heparan sulfate-binding sites in fibrillin-1 and report on the role of such glycosaminoglycans in the assembly of fibrillin-1. By using different binding assays, we localize two calcium-independent heparin-binding sites to the N-terminal (Arg(45)-Thr(450)) and C-terminal (Asp(1528)-Arg(2731)) domains of fibrillin-1. A calcium-dependent-binding site was localized to the central (Asp(1028)-Thr(1486)) region of fibrillin-1. Heparin binding to these sites can be inhibited by a highly sulfated and iduronated form of heparan sulfate but not by chondroitin 4-sulfate, chondroitin 6-sulfate, and dermatan sulfate, demonstrating that the heparin binding regions represent binding domains for heparan sulfate. When heparin or heparan sulfate was added to cultures of skin fibroblasts, the assembly of fibrillin-1 into a microfibrillar network was significantly reduced. Western blot analysis demonstrated that this effect was not due to a reduced amount of fibrillin-1 secreted into the culture medium. Inhibition of the attachment of glycosaminoglycans to core proteins of proteoglycans by beta-d-xylosides resulted in a significant reduction of the fibrillin-1 network. These studies suggest that binding of fibrillin-1 to proteoglycan-associated heparan sulfate chains is an important step in the assembly of microfibrils.  相似文献   

15.
Follistatin, an activin-binding protein secreted by cultured rat granulosa cells, was shown to associate with the cell surface by affinity labeling with 125I-activin. Addition of follistatin to the cultured cells demonstrated a typical ligand-binding saturation curve, suggesting that granulosa cells have a specific binding site for follistatin. This binding was markedly inhibited by heparin and heparan sulfate, but not by chondroitin sulfates A and C, keratan sulfate, and dermatan sulfate. When granulosa cells were treated with glycosaminoglycan-degrading enzymes before or after addition of follistatin to the cultures, heparinase and heparitinase treatments resulted in significant suppression of the binding, whereas treatment with chondroitinase ABC had no effect. A competition study of the binding using heparin derivatives demonstrated that follistatin seemed to recognize O-sulfate groups in the heparin molecule. Heparitinase-treated granulosa cells exhibited almost full responsiveness to activin, indicating that the enzyme treatment had no effect on activin and receptor interaction. These results suggest that follistatin/activin-binding protein binds to heparan sulfate side chains of proteoglycans on the granulosa cell surface to regulate the various actions of activin.  相似文献   

16.
Both newly formed and long-term culture-generated substratum adhesion sites, generated by EGTA-mediated detachment of Balb/c SVT2 cells, were extracted with an eta-octyl-beta-D-glucopyranoside buffer containing salt and several protease inhibitors under conditions which result in maximal solubilization of the sulfate-radiolabeled proteoglycans. Because of the functional importance of heparan sulfate proteoglycans in the fibronectin-dependent cell-substratum adhesion processes of these cells, these proteoglycans were fractionated on affinity columns of octyl-Sepharose or of the heparan sulfate-binding proteins platelet factor 4 or plasma fibronectin. These affinity matrices resolved a number of both binding and nonbinding classes of heparan sulfate proteoglycan from both types of adhesion sites. In particular, the platelet factor 4 column could resolve several proteoglycans with differing binding affinities. Approximately twice as much heparan sulfate proteoglycan from newly formed sites bound to all three matrices as proteoglycan from longterm sites. The proteoglycan which bound to one matrix was then tested for binding to a second matrix; this approach resolved a number of biochemically distinct species. For example, one-half of the fibronectin-Sepharose-binding fraction from the long-term sites could also bind to platelet factor 4-Sepharose; however, over 90% of the fibronectin-binding fraction from newly formed sites could bind to platelet factor 4. A major portion of the octyl-Sepharose-binding fractions of the original extracts could bind to fibronectin-Sepharose. These studies indicate that some of these proteoglycans have overlapping affinities for fibronectin, platelet factor 4, and octyl-Sepharose and that a portion of the heparan sulfate proteoglycan from these adhesion sites cannot bind to any of these affinity matrices. These results are discussed with regard to the functional significance of these various heparan sulfate proteoglycans in mediating adhesion to extracellular matrices containing fibronectin or platelet factor 4.  相似文献   

17.
Mucopolysaccharidoses are a group of genetically inherited disorders that result from the defective activity of lysosomal enzymes involved in glycosaminoglycan catabolism, causing their intralysosomal accumulation. Sanfilippo disease describes a subset of mucopolysaccharidoses resulting from defects in heparan sulfate catabolism. Sanfilippo disorders cause severe neuropathology in affected children. The reason for such extensive central nervous system dysfunction is unresolved, but it may be associated with the secondary accumulation of metabolites such as gangliosides. In this article, we describe the accumulation of dermatan sulfate as a novel secondary metabolite in Sanfilippo. Based on chondroitinase ABC digestion, chondroitin/dermatan sulfate levels in fibroblasts from Sanfilippo patients were elevated 2-5-fold above wild-type dermal fibroblasts. Lysosomal turnover of chondroitin/dermatan sulfate in these cell lines was significantly impaired but could be normalized by reducing heparan sulfate storage using enzyme replacement therapy. Examination of chondroitin/dermatan sulfate catabolic enzymes showed that heparan sulfate and heparin can inhibit iduronate 2-sulfatase. Analysis of the chondroitin/dermatan sulfate fraction by chondroitinase ACII digestion showed dermatan sulfate storage, consistent with inhibition of iduronate 2-sulfatase. The discovery of a novel storage metabolite in Sanfilippo patients may have important implications for diagnosis and understanding disease pathology.  相似文献   

18.
Herpes simplex virus type 2 (HSV-2) interacts with cell surface glycosaminoglycans during virus attachment. Glycoprotein B of HSV-2 can potentially mediate the interaction between the virion and cell surface glycosaminoglycans. To determine the specificity, kinetics, and affinity of these interactions, we used plasmon resonance-based biosensor technology to measure HSV-2 glycoprotein binding to glycosaminoglycans in real time. The recombinant soluble ectodomain of HSV-2 gB (gB2) but not the soluble ectodomain of HSV-2 gD bound readily to biosensor surfaces coated with heparin. The affinity constants (Kds) were determined for gB2 (Kd = 7.7 x 10(-7) M) and for gB2 deltaTM (Kd = 9.9 x 10(-7) M), a recombinant soluble form of HSV-2 gB in which only its transmembrane domain has been deleted. gB2 binding to the heparin surface was competitively inhibited by low concentrations of heparin (50% effective dose [ED50] = 0.08 microg/ml). Heparan sulfate and dermatan sulfate glycosaminoglycans have each been suggested as cell surface receptors for HSV. Our biosensor analyses showed that both heparan sulfate and dermatan sulfate inhibited gB2 binding (ED50 = 1 to 5 microg/ml), indicating that gB2 interacts with both heparin-like and dermatan sulfate glycosaminoglycans. Chondroitin sulfate A, in contrast, inhibited gB2 binding to heparin only at high levels (ED50 = 65 microg/ml). The affinity and specificity of gB2 binding to glycosaminoglycans demonstrated in these studies support its role in the initial binding of HSV-2 to cells bearing heparan sulfate or dermatan sulfate glycosaminoglycans.  相似文献   

19.
The binding of the basement-membrane glycoprotein laminin to glycosaminoglycans (aggregating and non-aggregating subsets of heparan sulphates and dermatan sulphates, as well as heparin, chondroitin sulphates and hyaluronic acid) was studied by affinity chromatography. Partially periodate-oxidized chains of glycosaminoglycans were coupled to adipic acid dihydrazide-substituted agarose. Co-polymeric glycosaminoglycans reveal high affinity for laminin, whereas hyaluronic acid does not. Competitive-release experiments indicate that glycosaminoglycans share a common binding site on the laminin molecule.  相似文献   

20.
Protein C inhibitor is a plasma protein whose ability to inhibit activated protein C, thrombin, and other enzymes is stimulated by heparin. These studies were undertaken to further understand how heparin binds to protein C inhibitor and how it accelerates proteinase inhibition. The region of protein C inhibitor from residues 264-283 was identified as the heparin-binding site. This differs from the putative heparin-binding site in the related proteins antithrombin and heparin cofactor. The glycosaminoglycan specificity of protein C inhibitor was relatively broad, including heparin and heparan sulfate, but not dermatan sulfate. Non-sulfated and non-carboxylated polyanions also enhanced proteinase inhibition by protein C inhibitor. Heparin accelerated inhibition of alpha-thrombin, gamma T-thrombin, activated protein C, factor Xa, urokinase, and chymotrypsin, but not plasma kallikrein. The ability of glycosaminoglycans to accelerate proteinase inhibition appeared to depend on the formation of a ternary complex of inhibitor, proteinase, and glycosaminoglycan. The optimum heparin concentration for maximal rate stimulation varied from 10 to 100 micrograms/ml and was related to the apparent affinity of the proteinase for heparin. There was no obvious relationship between heparin affinity and maximum inhibition rate or degree of rate enhancement. The affinity of the resultant protein C inhibitor-proteinase complex was also not related to inhibition rate enhancement, and the results showed that decreased heparin affinity of the complex is not an important part of the catalytic mechanism of heparin. The importance of protein C inhibitor as a regulator of the protein C system may depend on the relatively large increase in heparin-enhanced inhibition rate for activated protein C compared to other proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号