首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transendothelial migration of monocytes followed by their differentiation into macrophages involves interaction of monocytes with subendothelial matrix. The influence of extracellular matrix on monocyte–macrophage differentiation was studied using an in vitro model system with human PBMC maintained on different matrix protein substrata. Upregulation of macrophage specific marker activities such as endocytosis of modified proteins, changes in expression of cell surface antigen, and production of matrix metalloproteinases was studied. Cells maintained on Fibronectin (Fn) showed significantly higher rate of endocytosis and production of MMP2 and MMP9 when compared to other matrix protein substrata. Immunoblot analysis, ELISA, and zymography showed that Fn-dependent upregulation of MMPs was blocked by antibodies to α5β1 integrin indicating that the Fn effect was mediated by integrins. The Fn effect on mo–mΦ was blocked by genistein and herbimycin. As monocytes differentiate to macrophages there was an increase in the rate of production of Fn. These results indicate the influence of the microenvironment of the cell, particularly Fn, on mo–mΦ differentiation and integrin-mediated downstream signaling through focal adhesion kinase and Src type tyrosine kinase is involved in this.  相似文献   

2.
Loo WT  Cheung MN  Chow LW 《Life sciences》2004,76(7):743-752
This article aims at investigating the effect of production of matrix metalloproteinases (MMP) in human breast cancer tissues by means of three dimensional culture system. Thirty-nine tumour samples were taken from breast cancer patients. The tumour blocks were cultured on sponge gel using the three dimensional culture system. Breast cancer cells began shedding into the culture medium after 24 hours of culture. The cells were stained with trypan blue dye to assess viability on days 2, 4, 6 and 8. The culture medium was collected at these time points and tested for matrix metalloproteinases (MMP) 1,2,3 and 9 activities. There was a progressive increase in migration of cancer cells into the gel and culture medium from day 2 to day 8 and the interval difference was statistically significant (F ratio=4.06; p=0.008). The levels of all the MMPs tested were also significantly raised (P<0.05 for all the MMPs tested). When the levels of MMPs were correlated with the metabolic activities in the gel, medium and tumour block, cells in block show no correlation whereas cells in gel correlated significantly with MMP-1 and MMP-3. Cancer cells in the culture medium correlated with MMP-9. In conclusion, there is a progressive migration of cancer cells outside the tumour block. The migration into the gel and culture medium is associated with progressive and differential production of MMPs. It is likely that the three dimensional culture model assists in the selection of different subpopulations of cancer cells with different invasion properties as exemplified by the differential production of MMP.  相似文献   

3.
The capacity of inflammatory cell-derived matrix metalloproteinases (MMPs) to cleave tissue factor pathway inhibitor (TFPI) and alter its activity was investigated. MMP-7 (matrilysin) rapidly cleaved TFPI to a major 35-kDa product. In contrast, MMP-1 (collagenase-1), MMP-9 (gelatinase B), and MMP-12 (macrophage elastase) cleaved TFPI into several fragments including the 35-kDa band. However, rates of cleavage were most rapid for MMP-7 and MMP-9. NH(2)-terminal amino acid sequencing revealed that MMP-12 cleaved TFPI at Lys(20)-Leu(21)(close to Kunitz I domain and producing a 35-kDa band), Arg(83)-Ile(84) (between Kunitz I and II domains), and Ser(174)-Thr(175) (between Kunitz II and III domains). MMP-7 and MMP-9 cleaved TFPI at Lys(20)-Leu(21) with additional COOH-terminal processing. These MMPs did not cleave tissue factor (TF), factor VII, and factor Xa. Proteolytic cleavage by MMP-1, MMP-7, MMP-9, and MMP-12 resulted in considerable loss of TFPI activity. These observations indicate specific cleavage of TFPI by MMPs, which broadens their substrate profile. Co-localization of MMPs, TF, and TFPI in atherosclerotic tissues suggests that release of MMPs from inflammatory cell leukocytes may effect TF-mediated coagulation.  相似文献   

4.
During tissue-invasive events, migrating cells penetrate type I collagen-rich interstitial tissues by mobilizing undefined proteolytic enzymes. To screen for members of the matrix metalloproteinase (MMP) family that mediate collagen-invasive activity, an in vitro model system was developed wherein MDCK cells were stably transfected to overexpress each of ten different MMPs that have been linked to matrix remodeling states. MDCK cells were then stimulated with scatter factor/hepatocyte growth factor (SF/HGF) to initiate invasion and tubulogenesis atop either type I collagen or interstitial stroma to determine the ability of MMPs to accelerate, modify, or disrupt morphogenic responses. Neither secreted collagenases (MMP-1 and MMP-13), gelatinases (gelatinase A or B), stromelysins (MMP-3 and MMP-11), or matrilysin (MMP-7) affected SF/HGF-induced responses. By contrast, the membrane-anchored metalloproteinases, membrane-type 1 MMP, membrane-type 2 MMP, and membrane-type 3 MMP (MT1-, MT2-, and MT3-MMP) each modified the morphogenic program. Of the three MT-MMPs tested, only MT1-MMP and MT2-MMP were able to directly confer invasion-incompetent cells with the ability to penetrate type I collagen matrices. MT-MMP-dependent invasion proceeded independently of proMMP-2 activation, but required the enzymes to be membrane-anchored to the cell surface. These findings demonstrate that MT-MMP-expressing cells can penetrate and remodel type I collagen-rich tissues by using membrane-anchored metalloproteinases as pericellular collagenases.  相似文献   

5.
Activation and transition of hepatic stellate cells (HSCs) to myofibroblast (MFB)-like cells is influenced by growth factors, cytokines and matrix proteins like fibronectin (FN). To examine whether the FN-dependent transition of HSCs is mediated through FN receptor, a marker function, such as matrix metallo-proteinase (MMP) production by HSCs in primary culture was studied. An upregulation of MMP production by HSCs maintained on FN was observed. FN-dependent upregulation of MMPs was significantly reduced when cells were pre-treated with antibodies to alpha5beta1 integrin. Treatment of cells with genistein, a protein kinase C inhibitor completely blocked the gelatinase production by HSCs, indicating that the FN-dependent upregulation of MMPs is mediated through integrins and it involves tyrosine phosphorylation dependent signaling pathways.  相似文献   

6.
The synthesis and regulation of the matrix metalloproteinases (MMPs) are important factors contributing to the involution of mammary gland. In order to understand the role of these MMPs in involution and in remodeling of the mammary gland, the different MMPs (130K, 68K, and 60K gelatinases) were partially purified by gel filtration and affinity chromatography over gelatin Sepharose and subjected to kinetic analysis. Comparative analysis of the different gelatinases showed that the 130K that appears at the early involuntary phase and the constitutive 68K enzyme are more specific for Col IV of the basement membrane, while the inducible 60K that appeared at the later phase of involution degraded Col I more efficiently. These neutral proteinases required Ca2+/Zn2+ for their activity and the analysis of cation dependence revealed that Ca2+ at 10 mM concentration and above completely inhibited the enzyme. The 60K was active at very low concentration of Zn2+ (5 microM); but at higher concentration of Zn2+ (2 mM), where the 68K and 130K were active, the 60K gelatinase was inhibited, indicating a difference in the cation dependence of these enzymes. Chondroitin sulfate A and chondroitin sulfate C caused inhibition of the 130K, 68K, and 60K, while hyaluronic acid and heparin did not show any effect, suggesting that the chondroitin sulfate proteoglycan that decorates collagen in the ECM can modu late the activity of the collagenases in vivo. These results suggest that the 130K gelatinase expressed during the early phase of involution degraded Col IV of the basement membrane, making the 60K gelatinase formed at a later stage of involution more accessible to its preferred substrate (Col I of the underlying stroma), highlighting the role of these MMPs in mammary gland involution.  相似文献   

7.
8.
Macrophages are essential in development, repair and pathology of a variety of tissues via their roles in tissue remodelling, wound healing and inflammation. These biological functions are also associated with a number of human diseases, for example tumour associated macrophages have well defined functions in cancer progression. Xenopus embryonic macrophages arise from a haematopoietic stem cell population by direct differentiation and act as the main mechanism of host defence, before lymphoid cells and a circulatory system have developed. This function is conserved in mouse and human development. Macrophages express a number of matrix metalloproteinases (MMPs), which are central to their function. MMPs are a large family of zinc-dependent endoproteases with multiple roles in extracellular matrix remodelling and the modulation of signalling pathways. We have previously shown MMP-7 to be expressed by Xenopus embryonic macrophages. Here we investigate the role of MMP-7 and two other MMPs (MMP-18 and MMP-9) that are also expressed in the migrating macrophages. Using morpholino (MO) mediated knockdown of each of the MMPs we demonstrate that they are necessary for normal macrophage migration in vivo. The loss-of-function effect can be rescued using the specific MMPs, altered to be resistant to morpholinos but not by overexpression of the other MMPs. Double and triple morpholino knockdowns further suggest that these MMPs act combinatorily to promote embryonic macrophage migration. Thus, our results imply that these three MMPs have distinct functions, which together are crucial to mediate macrophage migration in the developing embryo. This demonstrates conclusively that MMPs are required for normal macrophage cell migration in the whole organism.  相似文献   

9.
While human dermal fibroblasts increase the expression and secretion of distinct matrix metalloproteinases (MMPs) in response to ultraviolet (UV) irradiation, much less is known about regulation of MMPs with regard to normal human epidermal keratinocytes (NHEK). In this in vitro study, the effect of ultraviolet A (UVA) irradiation on gelatinase expression and secretion by NHEK was investigated. Irradiation of NHEK with non-toxic doses of UVA resulted in a dose-dependent downregulation of MMP-2 (gelatinase A) and MMP-9 (gelatinase B). A single dose of 30JUVA/cm(2) lowered MMP-2 activity to 26% and MMP-9 activity to 33% compared with mock-irradiated cells at 24h after irradiation. Downregulation of MMP-2 and MMP-9 steady-state mRNA levels was observed at 4h after UVA irradiation. The inhibitory effect of UVA on gelatinases was mediated by UVA-generated singlet oxygen (1O(2)). These findings suggest an inverse response to UVA irradiation in NHEK than in fibroblasts.  相似文献   

10.
11.
Tumor targeting with a selective gelatinase inhibitor.   总被引:29,自引:0,他引:29  
Several lines of evidence suggest that tumor growth, angiogenesis, and metastasis are dependent on matrix metalloproteinase (MMP) activity. However, the lack of inhibitors specific for the type IV collagenase/gelatinase family of MMPs has thus far prevented the selective targeting of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) for therapeutic intervention in cancer. Here, we describe the isolation of specific gelatinase inhibitors from phage display peptide libraries. We show that cyclic peptides containing the sequence HWGF are potent and selective inhibitors of MMP-2 and MMP-9 but not of several other MMP family members. Our prototype synthetic peptide, CTTHWGFTLC, inhibits the migration of human endothelial cells and tumor cells. Moreover, it prevents tumor growth and invasion in animal models and improves survival of mice bearing human tumors. Finally, we show that CTTHWGFTLC-displaying phage specifically target angiogenic blood vessels in vivo. Selective gelatinase inhibitors may prove useful in tumor targeting and anticancer therapies.  相似文献   

12.
There is strong evidence that matrix metalloproteinases (MMPs) play a crucial role during osteogenesis and bone remodelling. Their synthesis by osteoblasts has been demonstrated during osteoid degradation prior to resorption of mineralised matrix by osteoclasts and their activities are regulated by tissue inhibitors of metalloproteinases (TIMPs). For this study we developed and utilised specific polyclonal antibodies to assess the presence of collagenase (MMP13), stromelysin 1 (MMP3), gelatinase A (MMP2), gelatinase B (MMP9) and TIMP-2 in both freshly isolated neonatal mouse calvariae and tissues cultured with and without bone-resorbing agents. Monensin was added towards the end of the culture period in order to promote intracellular accumulation of proteins and facilitate antigen detection. In addition, bone sections were stained for the osteoclast marker, tartrate-resistant acid phosphatase (TRAP). In uncultured tissues the bone surfaces had isolated foci of collagenase staining, and cartilage matrix stained for gelatinase B (MMP9) and TIMP-2. Calvariae cultured for as little as 3 h with monensin revealed intracellular staining for MMPs and TIMP-2 in mesenchymal tissues, as well as in cells lining the bone plates. The addition of cytokines to stimulate bone resorption resulted in pronounced TRAP activity along bone surfaces, indicating active resorption. There was a marked upregulation of enzyme synthesis, with matrix staining for collagenase and gelatinase B observed in regions of eroded bone. Increased staining for TIMP-2 was also observed in association with increased synthesis of MMPs. The new antibodies to murine MMPs should prove valuable in future studies of matrix degradation.  相似文献   

13.
Magnaporthe oryzae germlings tightly attach to the host surface by producing extracellular matrix (ECM) from germ tubes and appressoria, which are important for the early infection process. To understand the adhesion mechanisms of ECM during differentiation of infection structure, we evaluated the effects of various enzymes on M. oryzae germlings and the disease symptoms of the host plant, wheat. Treatment with β-mannosidase, collagenase N-2, collagenase S-1, or gelatinase B at 1-h postinoculation (hpi) resulted in germling detachment, although producing normal appressoria. Treatment with matrix metalloproteinases (MMPs) at 6 hpi also caused germling detachment. Furthermore, we confirmed by the inoculation tests and scanning electron microscopy that the germlings on the wheat plant were removed and did not manifest pathogenicity on treatment with MMPs. The most effective MMPs were crude collagenase, collagenase S-1, and gelatinase B, suggesting that the application of MMPs is promising for crop protection from fungal diseases by its detachment action.  相似文献   

14.
The tissue inhibitor of metalloproteinases-2 (TIMP-2) is potentially an important inhibitor of all known matrix metalloproteinases (MMPs). However, it has been shown to undergo specific interactions with both MMP-2 (gelatinase A) and MMP-14 (MT1-MMP), and it has been proposed that these three proteins function as a cell surface-based activation cascade for matrix metalloproteinases and as a focus of proteolytic activity. In this study, we have carried out mutagenesis and kinetic analyses to examine the unique interactions between the AB loop of TIMP-2 and MMP-14. The results demonstrate that the major binding contribution of the AB loop is due solely to residue Tyr-36 at the tip of the hairpin. From this work, we propose that TIMP-2 may be engineered to abrogate MMP-14 binding, whereas its binding properties for other MMPs, including MMP-2, are maintained. Mutants of TIMP-2 with more directed specificity may be of use in gene therapeutic approaches to human disease.  相似文献   

15.
Osteoblast differentiation is regulated by the presence of collagen type I (COL I) extracellular matrix (ECM). We have recently demonstrated that Factor XIIIA (FXIIIA) transglutaminase (TG) is required by osteoblasts for COL I secretion and extracellular deposition, and thus also for osteoblast differentiation. In this study we have further investigated the link between COL I and FXIIIA, and demonstrate that COL I matrix increases FXIIIA levels in osteoblast cultures and that FXIIIA is found as cellular (cFXIIIA) and extacellular matrix (ecmFXIIIA) forms. FXIIIA mRNA, protein expression, cellular localization and secretion were enhanced by ascorbic acid (AA) treatment and blocked by dihydroxyproline (DHP) which inhibits COL I externalization. FXIIIA mRNA was regulated by the MAP kinase pathway. Secretion of ecmFXIIIA, and its enzymatic activity in conditioned medium, were also decreased in osteoblasts treated with the lysyl oxidase inhibitor β-aminopropionitrile, which resulted in a loosely packed COL I matrix. Osteoblasts secrete a latent, inactive dimeric ecmFXIIIA form which is activated upon binding to the matrix. Monodansyl cadaverine labeling of TG substrates in the cultures revealed that incorporation of the label occurred at sites where fibronectin co-localized with COL I, indicating that ecmFXIIIA secretion could function to stabilize newly deposited matrix. Our results suggest that FXIIIA is an integral part of the COL I deposition machinery, and also that it is part of the ECM-feedback loop, both of which regulate matrix deposition and osteoblast differentiation.  相似文献   

16.
17.
18.
Mannose receptor determination by an ELISA-like method   总被引:1,自引:0,他引:1  
Mannose receptor determination may be a useful tool in research, because endocytosis via this animal lectin is involved in many functions of macrophage cells, in particular, the scavenger activity, the specific and unspecific defence against infective diseases, the recognition of neoplastic cells and the activation/differentiation process of the monocyte/macrophage and microglial population. To date, available tests required expensive equipment, the use of radioactive material or the availability of a specific antiserum. We describe an ELISA-like assay, based on biotinylated mannose-conjugated bovine serum albumin (BSA), which specifically binds to the cell mannose receptor. Biotin-labelled receptors can be quantified colorimetrically, utilising an avidin-alkaline phosphatase conjugate as the indicator enzyme. This new method is sensitive and reproducible, as well as simple and rapid, and can be performed with standard laboratory equipment.  相似文献   

19.
Integrin alpha(4)beta(1) on the surface of T lymphocytes interacts with vascular cell adhesion molecule-1 (VCAM-1) and fibronectin during migration of lymphocytes from the blood to sites of inflammation. Migrating lymphocytes actively modify their environment through a number of mechanisms including proteolysis of the extracellular matrix by matrix metalloproteinases (MMP) synthesized by the cells. In this study, expression of MMP upon alpha(4)beta(1)-mediated adhesion of leukocytes to two major ligands, the IIICS-1 domain of fibronectin and VCAM-1, has been examined. Adhesion of T lymphoblastoid Jurkat cells to the CS-1 peptide induced expression of mRNA for two MMPs, gelatinase A (MMP-2) and gelatinase B (MMP-9). As evaluated by relative RT-PCR and Northern blot analyses, the level of mRNA was upregulated about 4- to 5-fold for both MMPs compared to control cells maintained in suspension. With time, both enzymes were detected in conditioned media and inside the cells, and their identities were verified by Western blotting and gelatin zymography. Adhesion of Jurkat cells to the second major alpha(4)beta(1) ligand, VCAM-1, upregulated mRNA for MMP-2 (3.5-fold) and failed to induce expression of mRNA for MMP-9. Accordingly, only MMP-2 protein was detected in conditioned media of cells adherent to VCAM-1. Occupancy of alpha(4)beta(1) on the surface of suspended cells with soluble CS-1 peptide or VCAM-1 did not upregulate synthesis and release of MMPs. A similar pattern of induction of MMPs after adhesion to CS-1 and VCAM-1 was observed in T lymphocytes isolated from human blood. These results demonstrate that adhesion of T lymphocytes through alpha(4)beta(1) to different ligands, which bind to similar or overlapping sites in the integrin, induces intracellular events leading to distinct patterns of MMPs biosynthesis.  相似文献   

20.
In this study we performed a systematic comparative analysis of two culture environments—flat/adhesive liquid and three‐dimensional collagen gel—upon in vitro ovarian follicle development. We paid particular attention to the effects of in vitro environments upon the preservation of follicular structure and of peri‐ and intra‐follicular extracellular matrix. We show that flat/adhesive environment leads to an obvious distortion of follicle morphology, marked extracellular matrix modifications and high rates of spontaneous, i.e., FSH‐independent, follicle disruption. In contrast, three‐dimensional collagen gel environments are able to maintain follicular structure with an in vivo‐like basal lamina architecture, minimizing spontaneous disruption. Follicle distortions found in flat/adhesive culture systems include a pronounced flattening, causing the follicle horizontal diameters not to adequately reflect follicle volume. Our volume data, based on three‐axis follicle diameter measurements, indicate that three‐dimensional collagen gel environments increase follicle growth, particularly in response to FSH. This study demonstrates that preservation of both peri‐ and intra‐follicular extracellular matrix compartments during the in vitro growth and differentiation of ovarian follicles is highly desirable, and is now possible through the use of appropriate three‐dimensional collagen gel culture environments. This system allows a better understanding of the specific roles played by each of the follicle compartments during development. Mol. Reprod. Dev. 54:163–172, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号