首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron transfer rates were measured in RCs from three herbicide-resistant mutants with known amino acid changes to elucidate the structural requirements for last electron transfer. The three herbicide resistant mutants were IM(L229) (Ile-L229 Met), SP(L223) (Ser-L223 Pro) and YG(L222) (Tyr-L222 Gly). The electron transfer rate D+QA -QBD+QAQB (k AB) is slowed 3 fold in the IM(L229) and YG(L222) RCs (pH 8). The stabilization of D+QAQB - with respect to D+QAQB - (pH 8) was found to be eliminated in the IM(L229) mutant RCs (G0 0 meV), was partially reduced in the SP(L223) mutant RCs (G0=–30 meV), and was unaltered in the YG(L222) mutant RCs (G0=–60 meV), compared to that observed in the native RCs (G0=–60 meV). The pH dependences of the charge recombination rate D+QAQB -DQAQB (k BD) and the electron transfer from QA - (k QA -QA) suggest that the mutations do not affect the protonation state of Glu-L212 nor the electrostatic interactions of QB and QB - with Glu-L212. The binding affinities of UQ10 for the QB site were found in order of decreasing values to be native IM(L229) > YG(L222) SP(L223). The altered properties of the mutant RCs are used to deduce possible structural changes caused by the mutations and are dicscussed in terms of photosynthetic efficiency of the herbicide resistant strains.Abbreviations Bchl bacteriochlorophyll - Bphe bacteriopheophytin - cholate 3,7,12-trihydroxycholanic acid - D donor (bacteriochlorophyll dimer) - EDTA ethylenediamine tetraacetic acid - Fe2+ non-heme iron atom - LDAO lauryl dimethylamine oxide - PS II photosystem II - QA and QB primary and secondary quinone acceptors - RC bacterial reaction center - Tris tris(hydroxymethyl)aminomethane - UQ0 2,3-dimethoxy-5-methyl benzoquinone - UQ10 ubiquinone 50  相似文献   

2.
DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) at concentrations higher than 10 M suppresses the second time range delayed fluorescence (DF) of pea chloroplasts, due to inhibition of the oxidizing side of photosystem II (PS II). The inhibition of the reducing side of PS II resulting in the suppression of millisecond DF takes place at much lower (0.01 M) DCMU concentrations. The variation in the herbicide-affinities of the reducing and oxidizing sides of PS II is not the same for DCMU and phenol-type herbicides. The DCMU-affinity of the oxidizing side considerably increases and approximates that of the reducing side upon mild treatment of chloroplasts with oleic acid. Probably this is a result of some changes in the environment of the binding site at the oxidizing side. At DCMU concentrations higher than 1 mM, the chaotropic action of DCMU leads to the generation of millisecond luminescence which is not related to the functioning of the reaction centres.Abbreviations D-1 The 32 kDa herbicide-binding intrinsic polypeptide of PS II, the apoprotein of QB - D-2 The 32–34 kDa intrinsic polypeptide of PS II, probably the apoprotein of Z - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DF Delayed fluorescence - Dinoseb 2,4-dinitro-6-sec-butylphenol - DNOC 4,6-dinitro-o-cresol - Fm Maximal fluorescence yield (when all traps are closed) - Fo Constant fluorescence yield (when all traps are open) - PS Photosystem - QA and QB The primary and secondary plastoquinone acceptors of PS II, correspondingly - Z A plastoquinol electron donor, presumably associated with the D-2 protein  相似文献   

3.
Many herbicides that inhibit photosynthesis in plants also inhibit photosynthesis in bacteria. We have isolated three mutants of the photosynthetic bacterium Rhodobacter sphaeroides that were selected for increased resistance to the herbicide terbutryne. All three mutants also showed increased resistance to the known electron transfer inhibitor o-phenanthroline. The primary structures of the mutants were determined by recombinant DNA techniques. All mutations were located on the gene coding for the L-subunit resulting in these changes Ile229 Met, Ser223 Pro and Tyr222 Gly. The mutations of Ser223 is analogous to the mutation of Ser264 in the D1 subunit of photosystem II in green plants, strengthening the functional analogy between D1 and the bacterial L-subunit. The changed amino acids of the mutant strains form part of the binding pocket for the secondary quinone, Q b . This is consistent with the idea that the herbicides are competitive inhibitors for the Q b binding site. The reaction centers of the mutants were characterized with respect to electron transfer rates, inhibition constants of terbutryne and o-phenanthroline, and binding constants of the quinone UQ0 and the inhibitors. By correlating these results with the three-dimensional structure obtained from x-ray analysis by Allen et al. (1987a, 1987b), the likely positions of o-phenanthroline and terbutryne were deduced. These correspond to the positions deduced by Michel et al. (1986a) for Rhodopseudomonas viridis.Abbreviations ATP adenosine 5-triphosphate - Bchl bacteriochlorophyll - Bphe bacteriopheophytin - bp basepair - cyt c2+ reduced form of cytochrome c - DEAE diethylami-noethyl - EDTA ethylenediamine tetraacetic acid - Fe2+ non-heme iron atom - LDAO lauryl dimethylamine oxide - Pipes piperazine-N,N-bis-2-ethane-sulfonic acid - PSII photosystem II - RC reaction center - SDS sodium dodecylsulfate - Tris tris(hydroxy-methyl)aminomethane - UQ0 2,3-dimethoxy-5-methyl benzoquinone - UQ10 ubiquinone 50  相似文献   

4.
In this article, the three-dimensional structures of photosynthetic reaction centers (RCs) are presented mainly on the basis of the X-ray crystal structures of the RCs from the purple bacteria Rhodopseudomonas (Rp.) viridis and Rhodobacter (Rb.) sphaeroides. In contrast to earlier comparisons and on the basis of the best-defined Rb. sphaeroides structure, a number of the reported differences between the structures cannot be confirmed. However, there are small conformational differences which might provide a basis for the explanation of observed spectral and functional discrepancies between the two species.A particular focus in this review is on the binding site of the secondary quinone (QB), where electron transfer is coupled to the uptake of protons from the cytoplasm. For the discussion of the QB site, a number of newlydetermined coordinate sets of Rp. viridis RCs modified at the QB site have been included. In addition, chains of ordered water molecules are found leading from the cytoplasm to the QB site in the best-defined structures of both Rp. viridis and Rb. sphaeroides RCs.Abbreviations BA accessory bacteriochlorophyll in the active branch - BB accessory bacteriochlorophyll in the inactive branch - D primary electron donor (special pair) - DL special pair bacteriochorophyll bound by the L subunit - DM special pair bacteriochorophyll bound by the M subunit - QA primary electron acceptor quinone - QB secondary electron acceptor quinone - RC reaction center - Rb. Rhodobacter - Rp. Rhodopseudomonas - A bacteriopheophytin in the active branch - B bacteriopheophytin in the inactive branch  相似文献   

5.
A spontaneous mutant (R/89) of photosynthetic purple bacterium Rhodobacter sphaeroides R-26 was selected for resistance to 200 M atrazin. It showed increased resistance to interquinone electron transfer inhibitors of o-phenanthroline (resistance factor, RF=20) in UQo reconstituted isolated reaction centers and terbutryne in reaction centers (RF=55) and in chromatophores (RF=85). The amino acid sequence of the QB binding protein of the photosynthetic reaction center (the L subunit) was determined by sequencing the corresponding pufL gene and a single mutation was found (IleL229 Met). The changed amino acid of the mutant strain is in van der Waals contact with the secondary quinone QB. The binding and redox properties of QB in the mutant were characterized by kinetic (charge recombination) and multiple turnover (cytochrome oxidation and semiquinone oscillation) assays of the reaction center. The free energy for stabilization of QAQB with respect to QA QB was GAB=–60 meV and 0 meV in reaction centers and GAB=–85 meV and –46 meV in chromatophores of R-26 and R/89 strains at pH 8, respectively. The dissociation constants of the quinone UQo and semiquinone UQo in reaction centers from R-26 and R/89 showed significant and different pH dependence. The observed changes in binding and redox properties of quinones are interpreted in terms of differential effects (electrostatics and mesomerism) of mutation on the oxidized and reduced states of QB.Abbreviations BChl bacteriochlorophyll - Ile isoleucine - Met methionin - P primary donor - QA primary quinone acceptor - QB secondary quinone acceptor - RC reaction center protein - UQo 2,3-dimethoxy-5-methyl benzoquinone - UQ10 ubiquinone 50 This work is dedicated to the memory of Randall Ross Stein (1954–1994) and is, in a small way, a testament to the impact which Randy's ideas have had on the development of the field of competitive herbicide binding.  相似文献   

6.
To probe the structural elements that contribute to the functional asymmetries of the two ubiquinone10 binding pockets in the reaction center of Rhodobacter capsulatus, we targeted the L212Glu–L213Asp (near QB) and the M246Ala-M247Ala (near QA) pairs of symmetry-related residues for site-specific mutagenesis. We have constructed site-specific mutants that eliminate the sequence differences at these positions (L212Glu–L213AspAla-Ala or M246Ala–M247AlaGlu-Asp), and have reversed that asymmetry by constructing a quadruple-mutant strain, RQ (L212Glu–L213Asp-M246Ala–M247AlaAla-Ala-Gl u-Asp). The mutations were designed to change the charge distribution in the quinone-binding region of the reaction center; none of the strains is capable of photosynthetic growth. In photocompetent phenotypic revertants of the RQ strain, second-site mutations which affect QB function are coupled to mutations in the QA site which restore an Ala or substitute a Tyr at the M247 site; one strain carries an additional MetLeu substitution at M260 near QA. All of the RQ revertants retain the engineered M246AlaGlu mutation in the QA site as well as the L212Ala–L213Ala mutations in the QB site. Kinetic characterization of the RQ revertants will give us an idea of what structural and functional elements are important for restoring efficiency to electron and proton transfer pathways in the RQ RC, which is far from native. To date, these preliminary results underscore the importance of an asymmetric distribution of polar amino acids in the quinone binding pockets and its influence on the functional properties of the reaction center.  相似文献   

7.
Paddock  M.L.  Senft  M.E.  Graige  M.S.  Rongey  S.H.  Turanchik  T.  Feher  G.  Okamura  M.Y 《Photosynthesis research》1998,55(2-3):281-291
The structural basis for proton coupled electron transfer to QB in bacterial reaction centers (RCs) was studied by investigating RCs containing second site suppressor mutations (Asn M44 Asp, Arg M233 Cys, Arg H177 His) that complement the effects of the deleterious Asp L213 Asn mutation [DN(L213)]. The suppressor RCs all showed an increased proton coupled electron transfer rate k AB (2)(QA QB + H+ QAQBH) by at least 103 (pH 7.5) and a recombination rate k BD (D+QAQB DQAQB) 15–40 times larger than the value found in DN(L213) RCs. Proton transfer was studied by measuring the dependence of k AB (2) on the free energy for electron transfer (Get). k AB (2) was independent of Get in DN(L213) RCs, but dependent on Get in native and all suppressor RCs. This shows that proton transfer limits the k AB (2) reaction with a rate of 0.1s–1 in DN(L213) RCs but is not rate limiting and at least 108-fold faster in native and 105-fold faster in the suppressor RCs. The increased rate of proton transfer by the suppressor mutations are proposed to be due to: (i) a reduction in the barrier to proton transfer by providing a more negative electrostatic potential near QB ; and/or (ii) structural changes that permit fast proton transfer through the network of protonatable residues and water molecules near QB.  相似文献   

8.
The linear, four-step oxidation of water to molecular oxygen by photosystem II requires cooperation between redox reactions driven by light and a set of redox reactions involving the S-states within the oxygen-evolving complex. The oxygenevolving complex is a highly ordered structure in which a number of polypeptides interact with one another to provide the appropriate environment for productive binding of cofactors such as manganese, chloride and calcium, as well as for productive electron transfer within the photoact. A number of recent advances in the knowledge of the polypeptide structure of photosystem II has revealed a correlation between primary photochemical events and a core complex of five hydrophobic polypeptides which provide binding sites for chlorophyll a, pheophytin a, the reaction center chlorophyll (P680), and its immediate donor, denoted Z. Although the core complex of photosystem II is photochemically active, it does not possess the capacity to evolve oxygen. A second set of polypeptides, which are water-soluble, have been discovered to be associated with photosystem II; these polypeptides are now proposed to be the structural elements of a special domain which promotes the activities of the loosely-bound cofactors (manganese, chloride, calcium) that participate in oxygen evolution activity. Two of these proteins (whose molecular weights are 23 and 17 kDa) can be released from photosystem II without concurrent loss of functional manganese; studies on these proteins and on the membranes from which they have been removed indicate that the 23 and 17 kDa species from part of the structure which promotes retention of chloride and calcium within the oxygen-evolving complex. A third water-soluble polypeptide of molecular weight 33 kDa is held to the photosystem II core complex by a series of forces which in some circumstances may include ligation to manganese. The 33 kDa protein has been studied in some detail and appears to promote the formation of the environment which is required for optimal participation by manganese in the oxygen evolving reaction. This minireview describes the polypeptides of photosystem II, places an emphasis on the current state of knowledge concerning these species, and discusses current areas of uncertainty concerning these important polypeptides.Abbreviations A 23187 ionophore that exchanges divalent cations with H+ - Chl chlorophyll - cyt cytochrome - DCPIP dichlorophenolindophenol - DPC diphenylcarbazide - EGTA ethyleneglycoltetraacetic acid - P680 the chlorophyll a reaction center of photosystem II - pheo pheophytin - PQ plastoquinone - PS photosystem - QA and QB primary and secondary plastoquinone electron acceptors of photosystem II - Sn (n=0, 1, 2, 3, 4) charge accumulating state of the oxygen evolving system - Signals IIvf, IIf and IIs epr-detectable free radicals associated with the oxidizing side of photosystem II - Z primary electron donor to the photosystem II reaction center The survey of literature for this review ended in September, 1984.  相似文献   

9.
Barley seedlings (Hordeum vulgare L. Boone) were grown at 20°C with 16 h/8 h light/dark cycle of either high (H) intensity (500 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) and low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod. Thylakoid membranes were isolated from 3 cm apical segments and assayed for photosynthetic electron transport, Photosystem II (PS II) atrazine-binding sites (QB), cytochrome f(Cytf) and the P-700 reaction center of Photosystem I (PS I). Whole chain, PS I and PS II electron transport activities were higher in H than in L controls. QB and Cytf were elevated in H plants compared with L plants. The acclimation of H L plants to low light occurred slowly over a period of 7 days and resulted in decreased whole chain and PS II electron transport with variable effects on PS I activity. The decrease in electron transport of H L plants was associated with a decrease in both QB and Cytf. In L H plants, acclimation to high light occurred slowly over a period of 7 days with increased whole chain, PS I and PS II activities. The increase in L H electron transport was associated with increased levels of QB and Cytf. In contrast to the light intensity effects on QB levels, the P-700 content was similar in both control and transferred plants. Therefore, PS II/PS I ratios were dependent on light environment.Abbreviations Asc ascorbate - BQ 2,5-dimethyl-p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCIP 2,6-dichlorophenolindophenol - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L low control plants grown under low light intensity - L H plants transferred from low to high light intensity - MV methyl viologen - P-700 photoreaction center of Photosystem I - QB atrazine binding site - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11990 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   

10.
The temperature dependence of the electric field-induced chlorophyll luminescence in photosystem II was studied in Tris-washed, osmotically swollen spinach chloroplasts (blebs). The system II reaction centers were brought in the state Z+P+-QA -QB - by preillumination and the charge recombination to the state Z+PQAQB - was measured at various temperatures and electrical field strengths. It was found that the activation enthalpy of this back reaction was 0.16 eV in the absence of an electrical field and diminished with increasing field strength. It is argued that this energy is the enthalpy difference between the states IQA - and I-QA and accounts for about half of the free energy difference between these states. The redox state of QB does not influence this free energy difference within 150 s after the photoreduction of QA. The consequences for the interpretation of thermodynamic properties of QA are discussed.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - I intermediary electron acceptor - Mops 3-(N-morpholino)propanesulphonic acid - P (P680) primary electron donor - PS II photosystem II - QA and QB first and second quinone electron acceptors - Tricine N-tris(hydroxymethyl)methylglycine - Tris tris-(hydroxymethyl)aminomethane - Z secondary electron donor Dedicated to Professor L.N.M. Duysens on the occasion of his retirement  相似文献   

11.
An experimental analysis is presented concerning the effect on relative light absorption by the two photosystems caused by (a) a highly light scattering environment (the detour effect) and (b) light filtration across successive chloroplast layers (the light attenuation effect). Both suspensions of isolated chloroplasts and leaves were employed.It is concluded that within a single spinach leaf these phenomena are likely to lead to only rather small increases in relative photosystem I absorption and activity with respect to photosystem II and will thus not exert a significant effect on non cyclic electron transport. On the contrary when light is filtrated across successive vegetation layers (shade light) significant increases in the relative PSI absorption and activity may be encountered.It is determined that the detour effect in mature leaves from a variety of plants increases overall photosynthetically useful light absorption by 35–40%.Abbreviations FM maximal fluorescence - LHCP2 light-harvesting chlorophyl a/b protein complex II - QA-primary quinone acceptor of photosystem II  相似文献   

12.
Herbicide-resistant mutants of the eukaryotic green alga Chlamydomonas reinhardtii, that are altered in specific amino acids in their D-1 protein, show differential bicarbonate-reversible formate effects. These results suggest the involvement of D1 protein in the bicarbonate effect. A 25 mM formate treatment of mixotrophically or photoautotrophically grown wild type cells results in a slower rise of chlorophyll a fluorescence transient followed by a dramatically slowed decline during measurements in continuous light. These effects are fully reversed upon addition of 10 mM bicarbonate. The mutant BR-202 [L275F] is, however, highly insensitive to 25 mM formate suggesting that a significant change in formate (bicarbonate) binding has occurred in helix V of the D1 protein near histidine involved in Fe binding. With the exception of DCMU-4 [S264A], which is considerably more sensitive to formate than the wild type, five other different [V219I, A25IV, F255Y, G256D and cell-wall deficient CW-15] mutants display a relatively similar response to formate as wild type. Absence of formate effect on a PS II-lacking [FuD-7] mutant confirms the sole involvement of PS II in the bicarbonate effect.  相似文献   

13.
In bacterial reaction centers (RCs), changes of protonation state of carboxylic groups, of quinone-protein interactions as well as backbone rearrangements occuring upon QB photoreduction can be revealed by FTIR difference spectroscopy. The influence of compensatory mutations to the detrimental Asp L213 Asn replacement on QB /QB FTIR spectra of Rb. sphaeroides RCs was studied in three double mutants carrying a Asn M44 Asp, Arg M233 Cys, or Arg H177 His suppressor mutation. The proton uptake by Glu L212 upon QB formation, as reflected by the positive band at 1728 cm–1, is increased in the Asn M44 Asp and Arg H177 His suppressor RCs with respect to native RCs, and remains comparable to that observed in Asp L213 Asn mutant RCs. Only the Arg M233 Cys suppressor mutation affected the 1728 cm–1 band, reducing its amplitude to near native level. Thus, there is no clear correlation between the apparent extent of proton uptake by Glu L212 and the recovery of the proton transfer RC function. In all of the mutant spectra, several protein (amide I and amide II) and quinone anion (C...O/C...C) modes are perturbed compared to the spectrum of native RCs. These IR data show that all of the compensatory mutations alter the semiquinone-protein interactions and the backbone providing direct evidence of structural changes accompanying the restoration of efficient proton transfer in RCs containing the Asp L213 Asn lesion.  相似文献   

14.
A newly developed modulation fluorometer is described which operates with 1 sec light pulses from a light-emitting diode (LED) at 100 KHz. Special amplification circuits assure a highly selective recording of pulse fluorescence signals against a vast background of non-modulated light. The system tolerates ratios of up to 1:107 between measuring light and actinic light. Thus it is possible to measure the dark fluorescence yield and record the kinetics of light-induced changes. A high time resolution allows the recording of the rapid relaxation kinetic following a saturating single turnover flash. Examples of system performance are given. It is shown that following a flash the reoxidation kinetics of photosystem II acceptors are slowed down not only by the inhibitor DCMU, but by a number of other treatments as well. From a light intensity dependency of the induction kinetics the existence of two saturated intermediate levels (I1 and I2) is apparent, which indicates the removal of three distinct types of fluorescence quenching in the overall fluorescence rise from F0 to Fmax.Abbreviations QA and QB consecutive electron acceptors of photosystem II - PS II photosystem II - P 680 reaction center chlorophyll of photosystem II - F0 minimum fluorescence yield following dark adaptation - Fmax maximum fluorescence yield - DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea - DCCD N,N-dicyclohexylcarbodiimide - PQ plastoquinone - DAD diaminodurene Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

15.
The green alga Chlamydomonas reinhardtii is a facultative heterotroph and, when cultured in the presence of acetate, will synthesize chlorophyll (Chl) and photosystem (PS) components in the dark. Analysis of the thylakoid membrane composition and function in dark grown C. reinhardtii revealed that photochemically competent PS II complexes were synthesized and assembled in the thylakoid membrane. These PS II centers were impaired in the electron-transport reaction from the primary-quinone electron acceptor, QA, to the secondary-quinone electron acceptor, QB (QB-nonreducing centers). Both complements of the PS II Chl a–b light harvesting antenna (LHC II-inner and LHC II-peripheral) were synthesized and assembled in the thylakoid membrane of dark grown C. reinhardtii cells. However, the LHC II-peripheral was energetically uncoupled from the PS II reaction center. Thus, PS II units in dark grown cells had a -type Chl antenna size with only 130 Chl (a and b) molecules (by definition, PS II units lack LHC II-peripheral). Illumination of dark grown C. reinhardtii caused pronounced changes in the organization and function of PS II. With a half-time of about 30 min, PS II centers were converted froma QB-nonreducing form in the dark, to a QB-reducing form in the light. Concomitant with this change, PS II units were energetically coupled with the LHC II-peripheral complement in the thylakoid membrane and were converted to a PS II form. The functional antenna of the latter contained more than 250 Chl(a+b) molecules. The results are discussed in terms of a light-dependent activation of the QA-QB electron-transfer reaction which is followed by association of the PS II unit with a LHC II-peripheral antenna and by inclusion of the mature form of PS II (PS II) in the membrane of the grana partition region.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - F0 non-variable fluorescence yield - Fplf intermediate fluorescence yield plateau leyel - Fmax maximum fluorescence yield - Fi initial fluorescence yield increase from F0 to Fpl (Fpl–F0) - Fv total variable fluorescence yield (Fm–F0) - DCMU dichlorophenyl-dimethylurea  相似文献   

16.
The functional state of the PS II population localized in the stroma exposed non-appressed thylakoid region was investigated by direct analysis of the PS II content of isolated stroma thylakoid vesicles. This PS II population, possessing an antenna size typical for PS II, was found to have a fully functional oxygen evolving capacity in the presence of an added quinone electron acceptor such as phenyl-p-benzoquinone. The sensitivity to DCMU for this PS II population was the same as for PS II in control thylakoids. However, under more physiological conditions, in the absence of an added quinone acceptor, no oxygen was evolved from stroma thylakoid vesicles and their PS II centers were found to be incapable to pass electrons to PS I and to yield NADPH. By comparison of the effect of a variety of added quinone acceptors with different midpoint potentials, it is concluded that the inability of PS II in the stroma thylakoid membranes to contribute to NADPH formation probably is due to that QA of this population is not able to reduce PQ, although it can reduce some artificial acceptors like phenyl-p-benzoquinone. These data give further support to the notion of a discrete PS II population in the non-appressed stroma thylakoid region, PS II, having a higher midpoint potential of QA than the PS II population in the appressed thylakoid region, PS II. The physiological significance of a PS II population that does not produce any NADPH is discussed.Abbreviations pBQ p-benzoquinone - Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCIP 2,6-dichloroindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMBQ 2,5-dimethyl-p-benzoquinone - DQ duroquinone(tetramethyl-p-benzoquinone) - FeCN ferricyanide (potassium hexacyanoferrat) - MV methylviologen - NADPH,NADP+ reduced or oxidized form of nicotinamide adenine dinucleotide phosphate respectively - PpBQ phenyl-p-benzoquinone - PQ plastoquinone - PS II photosystem II - PS I photosystem I - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II - E microEinstein  相似文献   

17.
Summary A review is given of primary and associated electron transport reactions in various division of photosynthetic bacteria and in the two photosystems of plant photosynthesis. Two types of electron acceptor chains are distinguished: type Q, found in purple bacteria, Chloroflexus and system II of oxygenic photosynthesis and type F, found in green sulfur bacteria, Heliobacterium and photosystem I. Secondary donor reactions are discussed in relation to plant photosystem II.Dedicated to the memory of Warren L. Butler  相似文献   

18.
A human HLA-DQ -chain cDNA was used as a probe to identify and isolate a rat major histocompatibility antigen -chain gene from a genomic library constructed in the vector Charon 28 using Wistar rat DNA (RT1 u). The isolated exon of the rat gene (RT1.B 2) encoding a -chain second domain was found to share 93% nucleotide homology with a mouse A 2 exon. Although the genomic organization of this gene is consistent with the hypothesis that it represents a pseudogene, the remarkable preservation of a specific sequence favors the view that this class II antigen -chain gene has retained its coding function.  相似文献   

19.
Results are presented which, taken with evidence developed by others, suggest a general mechanism for the entry and binding of exogenous ligands (including O2) at the binuclear site (CuB Fe a3) of the heme-copper oxidases. The mechanism includes a ligand shuttle wherein the obligatory waystation for incoming ligands is CuB and the binding of exogenous ligands at this site triggers the exchange and displacement of endogenous ligands at Fe a3. It is suggested that these ligand shuttle reactions might be functionally important in providing a coupling mechanism for electron transfer and proton translocation. Scenarios as to how this might happen are delineated.  相似文献   

20.
The functional size of Photosystem II (PS II) was investigated by radiation inactivation. The technique provides an estimate of the functional mass required for a specific reaction and depends on irradiating samples with high energy -rays and assaying the remaining activity. The analysis is based on target theory that has been modified to take into account the temperature dependence of radiation inactivation of proteins. Using PS II enriched membranes isolated from spinach we determined the functional size of primary charge separation coupled to water oxidation and quinone reduction at the QB site: H2O (Mn)4 Yz P680 Pheophytin Q phenyl-p-benzoquinone. Radiation inactivation analysis indicates a functional mass of 88 ± 12 kDa for electron transfer from water to phenyl-p-benzoquinone. It is likely that the reaction center heterodimer polypeptides, D1 and D2, contribute approximately 70 kDa to the functional mass, in which case polypeptides adding up to approximately 20 kDa remain to be identified. Likely candidates are the and subunits of cytochrome b 559and the 4.5 kDa psbI gene product.Abbreviations Cyt cytochrome - PS Photosystem - P680 primary electron donor of Photosystem II - QA primary quinone acceptor of Photosystem II - QB secondary quinone acceptor of Photosystem II - Yz tyrosine donor to P680  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号