首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to induced DNA damage, proliferating cells arrest in their cell cycle or go into apoptosis. Ionizing radiation is known to induce degeneration of mammalian male germ cells. The effects on cell-cycle progression, however, have not been thoroughly studied due to lack of methods for identifying effects on a particular cell-cycle phase of a specific germ cell type. In this study, we have utilized the technique for isolation of defined segments of seminiferous tubules to examine the cell-cycle progression of irradiated rat mitotic (type B spermatogonia) and meiotic (preleptotene spermatocytes) G1/S cells. Cells irradiated as type B spermatogonia in mitotic S phase showed a small delay in progression through meiosis. Thus, it seems that transient arrest in the progression can occur in the otherwise strictly regulated progression of germ cells in the seminiferous epithelium. Contrary to the arrest observed in type B spermatogonia and in previous studies on somatic cells, X-irradiation did not result in a G1 delay in meiotic cells. This lack of arrest occurred despite the presence of unrepaired DNA damage that was measured when the cells had progressed through the two meiotic divisions.  相似文献   

2.
Stage-Specific Effects of X-Irradiation on Yeast Meiosis   总被引:7,自引:4,他引:3       下载免费PDF全文
L. W. Thorne  B. Byers 《Genetics》1993,134(1):29-42
Previous work has shown that cdc13 causes meiotic arrest of Saccharomyces cerevisiae following DNA replication by a RAD9-dependent mechanism. In the present work, we have further investigated the implicit effects of chromosomal lesions on progression through meiosis by exposing yeast cells to X-irradiation at various times during sporulation. We find that exposure of RAD9 cells to X-irradiation early in meiosis prevents sporulation, arresting the cells at a stage prior to premeiotic DNA replication. rad9 meiotic cells are much less responsive to X-irradiation damage, completing sporulation after treatment with doses sufficient to cause arrest of RAD9 strains. These findings thereby reveal a RAD9-dependent checkpoint function in meiosis that is distinct from the G(2) arrest previously shown to result from cdc13 dysfunction. Analysis of the spores that continued to be produced by either RAD9 or rad9 cultures that were X-irradiated in later stages of sporulation revealed most spores to be viable, even after exposure to radiation doses sufficient to kill most vegetative cells. This finding demonstrates that the lesions induced by X-irradiation at later times fail to trigger the checkpoint function revealed by cdc13 arrest and suggests that the lesions may be subject to repair by serving as intermediates in the recombination process. Strains mutant for chromosomal synapsis and recombination, and therefore defective in meiotic disjunction, were tested for evidence that X-ray-induced lesions might alleviate inviability by promoting recombination. Enhancement of spore viability when spo11 (but not hop1) diploids were X-irradiated during meiosis indicates that induced lesions may partially substitute for SPO11-dependent functions that are required for the initiation of recombination.  相似文献   

3.
M. Westerman 《Chromosoma》1967,22(4):401-416
The pattern of response of chiasma frequency to X-irradiation has been studied in germ line cells of male imagines of Schistocerca gregaria. A correlation has been established between the observed changes in chiasma frequency of the L and M type bivalents and the time in the meiotic cycle at which the treatment is given. Two radio-sensitive periods have been identified in meiosis itself. At one (meiotic DNA synthesis) X-irradiation produces a decrease in chiasma frequency while at the other (leptotene-early zygotene) the treatment leads to an increase in chiasma frequency. Small bivalents however do not respond to treatment and form a single chiasma under all conditions.  相似文献   

4.
S L Kelly  J M Parry 《Mutation research》1983,108(1-3):109-120
Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment to recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.  相似文献   

5.
Summary The course of meiotic recombination, gene conversion and crossing-over, was investigated in Saccharomyces cerevisiae. Gene conversion was used as the selected event by removing cells from a medium inducing and promoting meiosis to a vegetative growth medium selective for convertants. Gene conversion started to increase at the same time as DNA synthesis, and nuclei entered a phase where the chromatin appeared as thread-like structures. Crossing-over of linked and unlinked markers also started early but remained at a low level until synaptonemal complexes were formed. However, gene conversion and a limited amount of crossing-over could be completed without synaptonemal complexes. It was concluded that meiotic recombination in yeast can occur as early as during DNA synthesis and does not require the function of synaptonemal complexes. Moreover, the low incidence of crossing-over early in meiosis is attributed to a low frequency of strand isomerization.  相似文献   

6.
Checkpoints operate during meiosis to ensure the completion of DNA synthesis and programmed recombination before the initiation of meiotic divisions. Studies in the fission yeast Schizosaccharomyces pombe suggest that the meiotic response to DNA damage due to a failed replication checkpoint response differs substantially from the vegetative response, and may be influenced by the presence of homologous chromosomes. The checkpoint responses to DNA damage during fission yeast meiosis are not well characterized. Here we report that DNA damage induced during meiotic S-phase does not activate checkpoint arrest. We also find that in wild-type cells, markers for DNA breaks can persist at least to the first meiotic division. We also observe increased spontaneous S-phase damage in checkpoint mutants, which is repaired by recombination without activating checkpoint arrest. Our results suggest that fission yeast meiosis is exceptionally tolerant of DNA damage, and that some forms of spontaneous S-phase damage can be repaired by recombination without activating checkpoint arrest.  相似文献   

7.
The conversion from mitosis to meiosis is a phenomenon specific to the cellular progenitors of gametes; however, the mechanism or mechanisms responsible for this conversion are poorly understood. To this end, some morphological and molecular changes that occur during the initiation of meiosis in newt spermatogenesis are reported in the present paper. In situ morphologic studies revealed that spermatogonial stages comprise two phases: early mitotic generations (G1-G4) and late mitotic generations (G5-G8). Morphologic conversion from secondary spermatogonia to primary spermatocytes occurred during the intermediate stage of premeiotic DNA replication. The expression of proliferating cell nuclear antigen (PCNA), a DNA polymerase-delta auxiliary protein, in spermatogonia was weak in G1, highest during DNA synthesis (S), decreased in G2 and was not detectable in dividing cells. Complementary DNA for newt homologs of DMC1 (disrupted meiotic cDNA), which is an Escherichia coli RecA-like protein specifically active during meiosis, were isolated. The newt Dmc1 mRNA was first expressed significantly during the preleptotene stage and this continued into the spermatid stage. These observations present a basis for investigating the mechanism(s) controlling the conversion of newt spermatogonial cells from mitosis to meiosis.  相似文献   

8.
9.
In the basidiomycete Coprinus cinereus (C. cinereus), which shows a highly synchronous meiotic cell cycle, the meiotic prophase I cells demonstrate flap endonuclease-1 activity. To investigate its role during meiosis, we isolated a C. cinereus cDNA homolog of flap endonuclease-1 (CcFEN-1), 1377bp in length with the open reading frame (ORF) encoding a predicted molecular mass of 51 kDa. At amino-acid residues Glu276-Pro345, a specific inserted sequence composed of 70 amino acids rich in polar forms was found to exist, without sequence identity to other eukaryotic FEN-1 or the polar amino acid rich sequences found in C. cinereus PCNA and C. cinereus DNA ligase IV, although the lengths and percentages of polar amino acids were similar. Northern hybridization analysis indicated CcFEN-1 to be expressed not only in the pre-meiotic S phase but also in meiotic prophase I. The roles of CcFEN-1 during meiosis are discussed.  相似文献   

10.
11.
The pH step alkaline elution and alkaline sucrose gradient techniques were utilized to evaluate alterations in DNA replication (initiation and elongation) induced by heat and low dose X-irradiation is synchronized Chinese hamster ovary cells. The initiation and elongation process of DNA synthesis were radioresistant at the G1/S boundary (4 hours after mitosis) while in mid S phase (9 hours after mitosis) DNA initiation and elongation were sensitive to X-irradiation. The initiation and elongation processes of DNA synthesis which were radiation resistant at the G1/S boundary could be inhibited by a hyperthermia treatment (43 degrees C for 1 hour beginning at 4 hours after mitosis). The impairment of initiation in the heated cells was maintained through late S phase while that of elongation was reversible as judged by full recovery at 15 hours after mitosis. These data suggest that the known synergistic lethality of heat and radiation may be mediated by an impairment of initiation of DNA synthesis.  相似文献   

12.
13.
The meiotic effects of several cell division cycle (cdc) mutations of Saccharomyces cerevisiae have been investigated by electron microscopy and by genetic and biochemical methods. Diploid strains homozygous for cdc mutations known to confer defects on vegetative DNA synthesis were subjected to restrictive conditions during meiosis. Electron microscopy revealed that all four mutants were conditionally arrested in meiosis after duplication of the spindle pole bodies but before spindle formation for the first meiotic division. None of these mutants became committed to recombination or contained synaptonemal complex at the meiotic arrest. — The mutants differed in their ability to undergo premeiotic DNA synthesis under restrictive conditions. Both cdc8 and cdc21, which are defective in the propagation of vegetative DNA synthesis, also failed to undergo premeiotic DNA synthesis. The arrest of these mutants at the stage before meiosis I spindle formation could be attributed to the failure of DNA synthesis because inhibition of synthesis by hydroxyurea also caused arrest at this stage. — Premeiotic DNA synthesis occurred before the arrest of cdc7, which is defective in the initiation of vegetative DNA synthesis, and of cdc2, which synthesizes vegetative DNA but does so defectively. The meiotic arrest of cdc7 homozygotes was partially reversible. Even if further semiconservative DNA replication was inhibited by the addition of hydroxyurea, released cells rapidly underwent commitment to recombination and formation of synaptonemal complexes. The cdc7 homozygote is therefore reversibly arrested in meiosis after DNA replication, whereas vegetative cultures have previously been shown to be defective only in the initiation of DNA synthesis.  相似文献   

14.
We have performed a genetic and biochemical analysis of the SPO12 gene, which regulates meiotic nuclear divisions in budding yeast. When sporulated, spo12 mutants undergo a single meiotic nuclear division most closely resembling meiosis II. We observed that Spo12 protein is localized to the nucleus during both meiotic divisions and that Clb1-Cdc28, Clb3-Cdc28, Clb4-Cdc28, and Clb5-Cdc28 kinase activities during meiosis were not affected by a spo12 mutation. Using two-hybrid analysis, we identified several genes, three of which are meiotically induced, that may code for proteins that interact with Spo12p. We also observed that two genes, BNS1 (Bypasses Need for Spo12p), which has homology to SPO12, and SPO13, whose mutant phenotype is like that of spo12, can partially suppress the meiotic defect of spo12 mutants when overexpressed. We found that Spo12p is also localized to the nucleus in vegetative cells and that its level peaks during G2/M. We observed that a spo12 mutation is synthetically lethal in vegetative cells with a mutation in HCT1, a gene necessary for cells to exit mitosis, suggesting that Spo12p may have a role in exit from mitosis.  相似文献   

15.
The Role of the SPO11 Gene in Meiotic Recombination in Yeast   总被引:36,自引:10,他引:26       下载免费PDF全文
Several complementary experimental approaches were used to demonstrate that the SPO11 gene is specifically required for meiotic recombination. First, sporulating cultures of spo11-1 mutant diploids were examined for landmark biochemical, cytological and genetic events of meiosis and ascosporogenesis. Cells entered sporulation with high efficiency and showed a near-doubling of DNA content. Synaptonemal complexes, hallmarks of intimate homologous pairing, and polycomplex structures appeared during meiotic prophase. Although spontaneous mitotic intra- and intergenic recombination occurred at normal levels, no meiotic recombination was observed. Whereas greater than 50% of cells completed both meiotic divisions, packaging of the four meiotic products into mature ascospores took place in only a small subset of asci. Haploidization occurred in less than 1% of viable colony-forming units. Second, the Rec- meiotic defect conferred by spo11-1 was confirmed by dyad analysis of spores derived from spo13-1 single-division meiosis in which recombination is not a requirement for viable ascospore production. Diploids homozygous for the spo13-1 mutation undergo meiotic levels of exchange followed by a single predominantly equational division and form asci containing two near-diploid spores. With the introduction of the spo11-1 mutation, high spore viability was retained, whereas intergenic recombination was reduced by more than 100-fold.  相似文献   

16.
Sensitivity of meiotic yeast cells to ultraviolet light   总被引:8,自引:4,他引:4       下载免费PDF全文
Simchen G  Salts Y  Piñon R 《Genetics》1973,73(4):531-541
Sporulating cells of Saccharomyces cerevisiae show an increasing sensitivity to ultraviolet irradiation. Maximum sensitivity is reached at a time comparable to meiotic prophase. Sensitivity is expressed as reduced sporulation after the irradiation. The uv effect can be efficiently reversed by photoreactivating light. Viability is also more severely affected during premeiotic DNA synthesis and during meiosis than in earlier stages in sporulation. Cells left in sporulation medium after the irradiation show a reduced viability compared with the cells plated immediately after the irradiation. Non-sporulating diploids do not acquire sensitivity when exposed to sporulation medium, hence the sensitivity is related to the sporulation process. That meiosis itself is affected, rather than spore formation alone, is evident from experiments in which the uv irradiation interferes with the uncovering of a recessive marker and with commitment to meiosis. It is proposed that during meiotic prophase, the DNA repair system is different from that found in vegetative cells.  相似文献   

17.
We utilized strains of Saccharomyces cerevisiae that exhibit high efficiency of synchrony of meiosis to examine several aspects of meiosis including sporulation, recombination, DNA synthesis, DNA polymerase I and II, and Mg2+-dependent alkaline DNases. The kinetics of commitment to intragenic recombination and sporulation are similar. The synthesis of DNA, as measured directly with diphenylamine, appears to precede the commitment to recombination. Both DNA polymerase I and II activities and total DNA-synthesizing activity in crude extracts increase two- to threefold before the beginning of meiotic DNA synthesis. Increases of 10- to 20-fold over mitotic levels are found for Mg2+-dependent alkaline DNase activity in crude extracts before and during the commitment to meiotic intragenic recombination. Of particular interest is the comparable increase in a nuclease under the control of the RAD52 gene; this enzyme has been identified by the use of antibody raised against a similar enzyme from Neurospora crassa. Since the RAD52 gene is essential for meiotic recombination, the nuclease is implicated in the high levels of recombination observed during meiosis. The effects observed in this report are meiosis specific since they are not observed in an alpha alpha strain.  相似文献   

18.
The DNA and histone content of HeLa S-3 cell cultures was measured by direct mass assays 21 hours after 1000 rad of X-irradiation, when the cells were arrested in G2 phase. The nuclear DNA content of such cultures was found to be deficient (73% of control values). In contrast, the synthesis of nuclear histones persisted, and the total histone content was close to 100% of control values. When synchronously-growing cultures were irradiated in mid-S phase and examined 3-5 hours later in G2 phase, both DNA and histone content were equal to control values.  相似文献   

19.
The Dbf4-dependent Cdc7 kinase (DDK) is essential for chromosome duplication in all eukaryotes, but was proposed to be dispensable for yeast pre-meiotic DNA replication. This discrepancy led us to investigate the role of the unstable Cdc7-regulatory protein Dbf4 in meiosis. We show that, when Dbf4 is depleted at the time of meiotic induction, cells enter the meiotic program but do not replicate their chromosomes. Surprisingly when Dbf4 is depleted after the initiation of DNA synthesis, S phase goes to completion, but most cells arrest before anaphase I. Deletion of the cohesin Rec8 suppresses this phenotype, suggesting a distinct role of DDK for meiotic chromosome segregation. As after Cdc5 depletion, a fraction of cells undergo a single equational division suggesting a failure to mono-orient sister kinetochores. Our results demonstrate that Dbf4 is essential for DNA replication during meiosis like in vegetative cells and provide evidence for an additional role in setting up the reductional division of meiosis I.  相似文献   

20.
In budding yeast, commitment to meiosis is attained when meiotic cells cannot return to the mitotic cell cycle even if the triggering cue (nutrients deprivation) is withdrawn. Commitment is arrived at gradually, and different aspects of meiosis may be committed at different times. Cells become fully committed to meiosis at the end of Prophase I, long after DNA replication and just before the first meiotic division (MI). Whole‐genome gene expression analysis has shown that committed cells have a distinct and rapid response to nutrients, and are not simply insulated from environmental signals. Thus becoming committed to meiosis is an active process. The cellular event most likely to be associated with commitment to meiosis is the separation of the duplicated spindle‐pole bodies (SPBs) and the formation of the spindle. Commitment to the mitotic cell cycle is also associated with the separation of SPBs, although it occurs in G1, before DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号