首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tjong SC  Chen TS  Huang WN  Wu WG 《Biochemistry》2007,46(35):9941-9952
Cobra cardiotoxins (CTXs) are three-fingered polypeptides with positively charged domains that have been shown to bind to anionic ligands of snake venom citrate, glycosaminoglycans, sulfoglycosphingolipid, and nucleotide triphosphate with various biochemical effects including toxin dimerization, cell surface retention, membrane pore formation, cell internalization and blocking of enzymatic activities of kinase and ATPase. The reported anionic binding sites, however, are found to be different among different CTX homologues for potentially different CTX activities. Herein, by NMR studies of the binding of inorganic phosphate, dATP (stable form of ATP), and heparin-derived tetrasaccharide to Naja atra CTX A1, a novel CTX molecule exhibiting in vivo necrotic activity on skeletal muscle, we demonstrate that diverse ligands binding to CTXs could also occur at a single protein site with flexible side chain interactions. The flexibility of such an interaction is also illustrated by the available heparin-CTX A3 complex structures with different heparin chain lengths binding at the same site. Our results provide a likely structural explanation on how the interaction between heparan sufate and proteins depends more on the overall charge cluster organization rather than on their fine structures. We also suggest that the ligand binding site of CTX homologues can be fine-tuned by nonconserved residues near the binding pocket because of their flexible side chain interaction and dimerization ability, even for the rigid CTX molecules tightened by four disulfide bonds.  相似文献   

2.
Metabolically 35S- or 3H-labeled heparan sulfate was isolated from murine Reichert's membrane, an extraembryonic basement membrane produced by parietal endoderm cells, and from the basement membrane-producing Engelbreth-Holm-Swarm mouse tumor. The polysaccharides were subjected to structural analysis involving identification of products formed on deamination of the polysaccharides with nitrous acid. The polysaccharide from Reichert's membrane contained N- and O-sulfate groups in approximately equal proportions. It bound almost quantitatively and with high affinity to antithrombin. A high proportion of antithrombin-binding sequence was also indicated by the finding that 3-O-sulfated glucosamine residues accounted for about 10% of the total O-sulfate groups. In contrast, at least 80% of the sulfate residues in the heparan sulfate isolated from the mouse tumor were N-substituents. Only a minor proportion of this polysaccharide bound with high affinity to antithrombin, and no 3-O-sulfated glucosamine residues were detected. These results are discussed in relation to the possible functional role of heparan sulfate in basement membranes.  相似文献   

3.
Eukaryotic phosphatidylinositol transfer protein is a ubiquitous multifunctional protein that transports phospholipids between membrane surfaces and participates in cellular phospholipid metabolism during signal transduction and vesicular trafficking. The three-dimensional structure of the alpha-isoform of rat phosphatidylinositol transfer protein complexed with one molecule of phosphatidylcholine, one of its physiological ligands, has been determined to 2.2 A resolution by x-ray diffraction techniques. A single beta-sheet and several long alpha-helices define an enclosed internal cavity in which a single molecule of the phospholipid is accommodated with its polar head group in the center of the protein and fatty acyl chains projected toward the surface. Other structural features suggest mechanisms by which cytosolic phosphatidylinositol transfer protein interacts with membranes for lipid exchange and associates with a variety of lipid and protein kinases.  相似文献   

4.
A computer program (ORB) has been developed to predict 1H,13C and 15N NMR chemical shifts of previouslyunassigned proteins. The program makes use of the information contained in achemical shift database of previously assigned proteins supplemented by astatistically derived averaged chemical shift database in which the shifts arecategorized according to their residue, atom and secondary structure type[Wishart et al. (1991) J. Mol. Biol., 222, 311–333]. The predictionprocess starts with a multiple alignment of all previously assigned proteinswith the unassigned query protein. ORB uses the sequence and secondarystructure alignment program XALIGN for this task [Wishart et al. (1994)CABIOS, 10, 121–132; 687–688]. The prediction algorithm in ORB isbased on a scoring of the known shifts for each sequence. The scores dependon global sequence similarity, local sequence similarity, structuralsimilarity and residue similarity and determine how much weight one particularshift is given in the prediction process. In situations where no applicablepreviously assigned chemical shifts are available, the shifts derived from theaveraged database are used. In addition to supplying the user with predictedchemical shifts, ORB calculates a confidence value for every prediction. Theseconfidence values enable the user to judge which predictions are the mostaccurate and they are particularly useful when ORB is incorporated into acomplete autoassignment package. The usefulness of ORB was tested on threemedium-sized proteins: an interleukin-8 analog, a troponin C synthetic peptideheterodimer and cardiac troponin C. Excellent results are obtained if ORB isable to use the chemical shifts of at least one highly homologous sequence.ORB performs well as long as the sequence identity between proteins with knownchemical shifts and the new sequence is not less than 30%.  相似文献   

5.
Protein geranylgeranyltransferase-I (GGTase-I) catalyzes the transfer of a 20-carbon isoprenoid lipid to the sulfur of a cysteine residue located near the C terminus of numerous cellular proteins, including members of the Rho superfamily of small GTPases and other essential signal transduction proteins. In humans, GGTase-I and the homologous protein farnesyltransferase (FTase) are targets of anticancer therapeutics because of the role small GTPases play in oncogenesis. Protein prenyltransferases are also essential for many fungal and protozoan pathogens that infect humans, and have therefore become important targets for treating infectious diseases. Candida albicans, a causative agent of systemic fungal infections in immunocompromised individuals, is one pathogen for which protein prenylation is essential for survival. Here we present the crystal structure of GGTase-I from C. albicans (CaGGTase-I) in complex with its cognate lipid substrate, geranylgeranylpyrophosphate. This structure provides a high-resolution picture of a non-mammalian protein prenyltransferase. There are significant variations between species in critical areas of the active site, including the isoprenoid-binding pocket, as well as the putative product exit groove. These differences indicate the regions where specific protein prenyltransferase inhibitors with antifungal activity can be designed.  相似文献   

6.
1. Human, porcine, rabbit, and rat antithrombin III have been purified by affinity chromatography using heparin-agarose. The amino acid and carbohydrate compositions, amino-terminal sequences, immunological cross-reactivities, and inhibitions of human thrombin were studied. 2. Human, porcine, rabbit, and rat antithrombin III are single-chain glycoproteins containing hexose, glucosamine, and neuraminic acid. 3. The total carbohydrate contents were 17, 16, 14, and 15% for human, porcine, rabbit, and rat antithrombin III, respectively. 4. Molecular weights estimated from the migration in sodium dodecyl sulfate (SDS)-poly-acrylamide gel electrophoresis were 59,000, 58,000, 63,000, and 63,000 for human, porcine rabbit, and rat antithrombin III, respectively. 5. These four proteins have similar amino acid compositions, although some minor differences were noted. 6. Human, porcine, and rabbit antithrombin III have a histidine residue at the amino-terminus, while rat antithrombin III contains an amino-terminal asparagine residue. 7. The amino-terminal sequences up to the first 17 residues showed high homology among the four proteins. 8. Some immunological cross-reactivity was observed only between human and porcine antithrombin III. 9. The apparent dissociation constants (KI) for the complexes between human thrombin and human, porcine, rabbit, and rat antithrombin III were about 1.2 x 10(-10) M, 9.5 X 10 (-9) M, 1.4 X 10(-7) M, and 2.8 X 10(-9) M, respectively.  相似文献   

7.
The crystal structure of the specific carrier of retinol (retinol-binding protein, RBP) purified from chicken plasma has been determined (space group P2(1)2(1)2(1), with a=46.06(5) A, b=53.56(6) A, c=73.41(8) A, and one protein molecule in the asymmetric unit). Despite being obtained from a species phylogenetically distant from mammals, chicken holoRBP has an overall structure that closely resembles the previously determined structures of mammalian holoRBPs. The lack in chicken RBP of eight carboxy-terminal amino acid residues characteristic of mammalian RBPs does not significantly affect the protein structure. A distinctive feature of the avian protein is a better definition of the loop 63-67, close to the opening of the beta-barrel cavity accommodating the retinol molecule, which is rather disordered in the structures of mammalian RBPs.  相似文献   

8.
J Tormo  D Blaas  N R Parry  D Rowlands  D Stuart    I Fita 《The EMBO journal》1994,13(10):2247-2256
The three-dimensional structure of the complex between the Fab fragment of an anti-human rhinovirus neutralizing antibody (8F5) and a cross-reactive synthetic peptide from the viral capsid protein VP2 has been determined at 2.5 A resolution by crystallographic methods. The refinement is presently at an R factor of 0.18 and the antigen-binding site and viral peptide are well defined. The peptide antigen adopts a compact fold by two tight turns and interacts through hydrogen bonds, some with ionic character, and van der Waals contacts with antibody residues from the six hypervariable loops as well as several framework amino acids. The conformation adopted by the peptide is closely related to the corresponding region of the viral protein VP2 on the surface of human rhinovirus 1A whose three-dimensional structure is known. Implications for the cross-reactivity between peptides and the viral capsid are discussed. The peptide-antibody interactions, together with the analysis of mutant viruses that escape neutralization by 8F5 suggest two different mechanisms for viral escape. The comparison between the complexed and uncomplexed antibody structures shows important conformational rearrangements, especially in the hypervariable loops of the heavy chain. Thus, it constitutes a clear example of the 'induced fit' molecular recognition mechanism.  相似文献   

9.
Stratmann D  Boelens R  Bonvin AM 《Proteins》2011,79(9):2662-2670
Despite recent advances in the modeling of protein-protein complexes by docking, additional information is often required to identify the best solutions. For this purpose, NMR data deliver valuable restraints that can be used in the sampling and/or the scoring stage, like in the data-driven docking approach HADDOCK that can make use of NMR chemical shift perturbation (CSP) data to define the binding site on each protein and drive the docking. We show here that a quantitative use of chemical shifts (CS) in the scoring stage can help to resolve ambiguities. A quantitative CS-RMSD score based on (1) H(α) ,(13) C(α) , and (15) N chemical shifts ranks the best solutions always at the top, as demonstrated on a small benchmark of four complexes. It is implemented in a new docking protocol, CS-HADDOCK, which combines CSP data as ambiguous interaction restraints in the sampling stage with the CS-RMSD score in the final scoring stage. This combination of qualitative and quantitative use of chemical shifts increases the reliability of data-driven docking for the structure determination of complexes from limited NMR data.  相似文献   

10.
11.
Vila JA  Scheraga HA 《Proteins》2008,71(2):641-654
Interest centers here on the analysis of two different, but related, phenomena that affect side-chain conformations and consequently 13C(alpha) chemical shifts and their applications to determine, refine, and validate protein structures. The first is whether 13C(alpha) chemical shifts, computed at the DFT level of approximation with charged residues is a better approximation of observed 13C(alpha) chemical shifts than those computed with neutral residues for proteins in solution. Accurate computation of 13C(alpha) chemical shifts requires a proper representation of the charges, which might not take on integral values. For this analysis, the charges for 139 conformations of the protein ubiquitin were determined by explicit consideration of protein binding equilibria, at a given pH, that is, by exploring the 2(xi) possible ionization states of the whole molecule, with xi being the number of ionizable groups. The results of this analysis, as revealed by the shielding/deshielding of the 13C(alpha) nucleus, indicated that: (i) there is a significant difference in the computed 13C(alpha) chemical shifts, between basic and acidic groups, as a function of the degree of charge of the side chain; (ii) this difference is attributed to the distance between the ionizable groups and the 13C(alpha) nucleus, which is shorter for the acidic Asp and Glu groups as compared with that for the basic Lys and Arg groups; and (iii) the use of neutral, rather than charged, basic and acidic groups is a better approximation of the observed 13C(alpha) chemical shifts of a protein in solution. The second is how side-chain flexibility influences computed 13C(alpha) chemical shifts in an additional set of ubiquitin conformations, in which the side chains are generated from an NMR-derived structure with the backbone conformation assumed to be fixed. The 13C(alpha) chemical shift of a given amino acid residue in a protein is determined, mainly, by its own backbone and side-chain torsional angles, independent of the neighboring residues; the conformation of a given residue itself, however, depends on the environment of this residue and, hence, on the whole protein structure. As a consequence, this analysis reveals the role and impact of an accurate side-chain computation in the determination and refinement of protein conformation. The results of this analysis are: (i) a lower error between computed and observed 13C(alpha) chemical shifts (by up to 3.7 ppm), was found for approximately 68% and approximately 63% of all ionizable residues and all non-Ala/Pro/Gly residues, respectively, in the additional set of conformations, compared with results for the model from which the set was derived; and (ii) all the additional conformations exhibit a lower root-mean-square-deviation (1.97 ppm < or = rmsd < or = 2.13 ppm), between computed and observed 13C(alpha) chemical shifts, than the rmsd (2.32 ppm) computed for the starting conformation from which this additional set was derived. As a validation test, an analysis of the additional set of ubiquitin conformations, comparing computed and observed values of both 13C(alpha) chemical shifts and chi(1) torsional angles (given by the vicinal coupling constants, 3J(N-Cgamma) and 3J(C'-Cgamma), is discussed.  相似文献   

12.
Sphingomonas sp. A1 possesses a high molecular weight (HMW) alginate uptake system composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by the periplasmic HMW alginate-binding proteins AlgQ1 and AlgQ2. We determined the crystal structure of AlgQ2 complexed with an alginate tetrasaccharide using an alginate-free (apo) form as a search model and refined it at 1.6-A resolution. One tetrasaccharide was found between the N and C-terminal domains, which are connected by three extended hinge loops. The tetrasaccharide complex took on a closed domain form, in contrast to the open domain form of the apo form. The tetrasaccharide was bound in the cleft between the domains through van der Waals interactions and the formation of hydrogen bonds. Among the four sugar residues, the nonreducing end residue was located at the bottom of the cleft and exhibited the largest number of interactions with the surrounding amino acid residues, suggesting that AlgQ2 mainly recognizes and binds to the nonreducing part of a HMW alginate and delivers the polymer to the ABC transporter through conformational changes (open and closed forms) of the two domains.  相似文献   

13.
The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate [HPI])-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1,036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and Mr estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%) of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.  相似文献   

14.
The primary structures of nine major saccharide alditols in the fraction of neutral carbohydrates derived from human seminal plasma mucin have been established on the basis of fast atom bombardment and electron impact mass spectrometry combined with methylation analysis, exoglycosidase digestion, and CrO3 oxidation, as follows. Formula: see text.  相似文献   

15.
Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts   总被引:3,自引:3,他引:0  
A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts – RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 Å) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of 20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (< 1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1H), 0.980 (13C), 0.996 (13C), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http://redpoll.pharmacy.ualberta.ca.  相似文献   

16.
We have determined the structure of a human rhinovirus (HRV)-Fab complex by using cryoelectron microscopy and image reconstruction techniques. This is the first view of an intact human virus complexed with a monoclonal Fab (Fab17-IA) for which both atomic structures are known. The surface area on HRV type 14 (HRV14) in contact with Fab17-IA was approximately 500 A2 (5 nm2), which is much larger than the area that constitutes the NIm-IA epitope (on viral protein VP1) defined by natural escape mutants. From modeling studies and electrostatic potential calculations, charged residues outside the neutralizing immunogenic site IA (NIm-IA) were also predicted to be involved in antibody recognition. These predictions were confirmed by site-specific mutations and analysis of the Fab17-IA-HRV14 complex, along with knowledge of the crystallographic structures of HRV14 and Fab17-IA. The bound Fab17-IA reaches across a surface depression (the canyon) and meets a related Fab at the nearest icosahedral twofold axis. By adjusting the elbow angles of the bound Fab fragments from 162 degrees to 198 degrees, an intact antibody molecule can be easily modeled. This, along with aggregation and binding stoichiometry results, supports the earlier proposal that this antibody binds bivalently to the surface of HRV14 across icosahedral twofold axes. One prediction of this model, that the intact canyon-spanning immunoglobulin G molecule would block attachment of the virus to HeLa cells, was confirmed experimentally.  相似文献   

17.
Nuclear magnetic resonance (NMR) spectroscopy is a primary tool to perform structural studies of proteins in physiologically-relevant solution conditions. Restraints on distances between pairs of nuclei in the protein, derived from the nuclear Overhauser effect (NOE), provide information about the structure of the protein in its folded state. NMR studies of symmetric protein homo-oligomers present a unique challenge. Using X-filtered NOESY experiments, it is possible to determine whether an NOE restrains a pair of protons across different subunits or within a single subunit, but current experimental techniques are unable to determine in which subunits the restrained protons lie. Consequently, it is difficult to assign NOEs to particular pairs of subunits with certainty, thus hindering the structural analysis of the oligomeric state. Computational approaches are needed to address this subunit ambiguity, but traditional solutions often rely on stochastic search coupled with simulated annealing and simulations of simplified molecular dynamics, which have many tunable parameters that must be chosen carefully and can also fail to report structures consistent with the experimental restraints. In addition, these traditional approaches rarely provide guarantees on running time or solution quality. We reduce the structure determination of homo-oligomers with cyclic symmetry to computing geometric arrangements of unions of annuli in a plane. Our algorithm, disco, runs in expected O(n2) time, where n is the number of distance restraints, potentially assigned ambiguously. disco is guaranteed to report the exact set of oligomer structures consistent with the distance restraints and also with orientational restraints from residual dipolar couplings (RDCs). We demonstrate our method using two symmetric protein complexes: the trimeric E. coli diacylglycerol kinase (DAGK) and a dimeric mutant of the immunoglobulin-binding domain B1 of streptococcal protein G (GB1). In both cases, disco computes oligomer structures with high precision and also finds distance restraints that are either mutually inconsistent or inconsistent with the RDCs. The entire protocol DISCO has been completely automated in a software package that is freely available and open-source at www.cs.duke.edu/donaldlab/software.php.  相似文献   

18.
The effect of pressure on amide 15N chemical shifts was studied in uniformly 15N-labeled basic pancreatic trypsin inhibitor (BPTI) in 90%1H2O/10%2H2O, pH 4.6, by 1H-15N heteronuclear correlation spectroscopy between 1 and 2,000 bar. Most 15N signals were low field shifted linearly and reversibly with pressure (0.468 +/- 0.285 ppm/2 kbar), indicating that the entire polypeptide backbone structure is sensitive to pressure. A significant variation of shifts among different amide groups (0-1.5 ppm/2 kbar) indicates a heterogeneous response throughout within the three-dimensional structure of the protein. A tendency toward low field shifts is correlated with a decrease in hydrogen bond distance on the order of 0.03 A/2 kbar for the bond between the amide nitrogen atom and the oxygen atom of either carbonyl or water. The variation of 15N shifts is considered to reflect site-specific changes in phi, psi angles. For beta-sheet residues, a decrease in psi angles by 1-2 degrees/2 kbar is estimated. On average, shifts are larger for helical and loop regions (0.553 +/- 0.343 and 0.519 +/- 0.261 ppm/2 kbar, respectively) than for beta-sheet (0.295 +/- 0.195 ppm/2 kbar), suggesting that the pressure-induced structural changes (local compressibilities) are larger in helical and loop regions than in beta-sheet. Because compressibility is correlated with volume fluctuation, the result is taken to indicate that the volume fluctuation is larger in helical and loop regions than in beta-sheet. An important aspect of the volume fluctuation inferred from pressure shifts is that they include motions in slower time ranges (less than milliseconds) in which many biological processes may take place.  相似文献   

19.
Very low density lipoproteins ere isolated from plasma of swine by ultracentrifugal flotation. After delipidation, the lipid-free proteins were separated by chromatography on Sephadex G-150 AND DEAE-cellulose. A major apoprotein was isolated and shown to activate cows' milk lipoprotein lipase. Since human very low density lipoproteins also contain an activator protein, designated, apoC-II, we have called the pig protein, pig apoC-II. Pig apoC-II had a molecular weight of approximately 10 000 as determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The amino acid composistion showed the absence of histidine, cysteine and tryptophan; there was no evidence for carbohydrate. Treatment of pig apoC-II with carboxypeptidase indicated COOH-terminal serine. Rabbit antisera prepared to the pig protein gave single precipitin lines of complete identity to very low density lipoproteins, apoC-11. Using anti-pig apoC-II, a radioimmunoassay was developed which provides a convenient and reproducible method for measuring 5-1000 ng of apoprotein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号