首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endogenous cytokinins in the ribosomal RNA of higher plants   总被引:1,自引:0,他引:1       下载免费PDF全文
Endogenous cytokinin-active ribonucleosides were isolated from the rRNA and tRNA of pea epicotyls (Pisum sativum L., var Alaska) and of wheat germ (Triticum aestivum). The RNA preparations were analyzed for cytokinins by enzymic hydrolysis, ethyl acetate extraction, and Sephadex LH-20 fractionation in several solvents. Tentative identification of the cytokinins was based on cochromatography with synthetic cytokinin standards in several systems and on activity in the tobacco bioassay. Both the rRNA and tRNA from 10 day old pea epicotyls contained ribosylzeatin, isopentenyladenosine, and 2-methylthioribosylzeatin. The latter compound was the most active fraction in the pea rRNA, but was the least active fraction in the tRNA, where isopentenyladenosine activity was predominant. The 2-methylthioribosylzeatin from pea rRNA was identified by gas chromatography-mass spectrometry. Wheat germ rRNA contained cis and trans ribosylzeatin and 2-methylthioribosylzeatin. The tRNA contained isopentenyladenosine in addition. The specific cytokinin activity (activity per A260 unit) of the tRNA was over forty times that of the rRNA. Significant contamination of the rRNA preparations by cytokinin-containing tRNA is considered unlikely on the basis of quantitative differences in the cytokinin content of the rRNA and tRNA preparations, electrophoretic analysis of rRNA purity and cytokinin analysis of fractionated oligonucleotide digests.  相似文献   

2.
Cytokinin Production by Bradyrhizobium japonicum   总被引:2,自引:0,他引:2       下载免费PDF全文
Although there is considerable circumstantial evidence for the involvement of cytokinins in legume nodulation, the cytokinins produced by rhizobia have not been well characterized. Bradyrhizobium japonicum 61A68, a bacterium which nodulates soybean (Glycine max [L.] Merr.), was grown in defined medium. Cytokinins were purified from the culture medium by Amberlite XAD-2 chromatography and fractionated by column chromatography on Sephadex LH-20 in 35% ethanol. Pooled fractions from the Sephadex column were analyzed for cytokinin activity with the tobacco callus bioassay. Cytokinin activity was observed in fractions corresponding to the elution volumes of zeatin, ribosylzeatin, and methylthiozeatin. No activity corresponding to the elution volumes of isopentenyladenine or its riboside was found. Total cytokinin activity in the B. japonicum culture filtrate was equivalent to approximately 1 microgram of kinetin per liter. Transfer RNA was isolated from B. japonicum cells by phenol extraction, followed by potassium acetate extraction, cetyltrimethylammonium bromide precipitation, and DEAE cellulose chromatography. Transfer RNA was enzymically hydrolyzed to nucleosides. High performance liquid chromatographic analysis of cytokinin nucleosides showed peaks corresponding to the retention times of trans-ribosylzeatin, methylthioribosylzeatin, isopentenyladenosine, and methylthioisopentenyladenosine. Analysis of the tRNA hydrolysate by Sephadex LH-20 chromatography and tobacco bioassay showed cytokinin activity in fractions corresponding to ribosylzeatin, methylthioribosylzeatin, and isopentenyladenosine. The presence of the trans isomer of ribosylzeatin was also determined by enzyme immunoassay.  相似文献   

3.
Hydroxylated cytokinin, 2-methylthio-N6-(4-hydroxy-3-methylbut-2-enyl) adenosine, was found in the tRNA of Azotobacter vinelandii. This cytokinin had the trans configuration, unlike the cis configuration reported for that from other bacteria. Culture-condition-dependent changes in the content of this thiocytokinin and a few other thionucleosides in the tRNA of this bacterium have been observed.  相似文献   

4.
Analysis of 35S labled nucleosides prepared from tRNA of Pseudomonas aeruginosa by phosphocellulose column chromatography, thin layer chromatography and Sephadex LH-20 column chromatography revealed the presence of 2-methylthioribosylzeatin in it.  相似文献   

5.
The initial step in the de novo biosynthesis of cytokinin in higher plants is the formation of isopentenyladenosine 5'-monophosphate (iPMP) from AMP and dimethylallylpyrophosphate (DMAPP), which is catalyzed by adenylate isopentenyltransferase (IPT). Although cytokinin is an essential hormone for growth and development, the nature of the enzyme for its biosynthesis in higher plants has not been identified. Herein, we describe the molecular cloning and biochemical identification of IPTs from Arabidopsis thaliana. Eight cDNAs encoding putative IPT, designated as AtIPT1 to AtIPT8, were picked up from A. thaliana. The Escherichia coli transformants expressing the recombinant proteins excreted cytokinin species into the culture medium except for that expressing AtIPT2 that is a putative tRNA IPT. A purified recombinant AtIPT1 catalyzed the formation of iPMP from DMAPP and AMP. These results indicate that the small multigene family contains both types of isopentenyltransferase, which could synthesize cytokinin and mature tRNA.  相似文献   

6.
Cytokinin activity in Lupinus albus   总被引:1,自引:0,他引:1  
The distribution and metabolism of {8-14C}zeatin incorporated into the transpiration stream of fruiting white lupin plants ( Lupinus albus L.) has been studied. The distribution pattern of 14C in the different aerial organs suggests that the amount of cytokinin being incorporated into any one organ may have been a function of its transpiration rate. Once in these organs, particularly the leaves, zeatin was rapidly metabolised and or utilised. This resulted in the formation of a number of labelled compounds that did not give a response with the soybean callus bioassay. Substances co-eluting with zeatin glucoside and ribosylzeatin appeared to be the principal biologically active metabolites. From the present evidence it can be concluded that the leaf and side shoots received a major proportion of the applied labelled cytokinin. However, the presence of a small amount of radioactivity co-eluting with zeatin and ribosylzeatin in the fruits indicates that the high levels of cytokinins normally associated with these organs need not necessarily all have been synthesised in situ.  相似文献   

7.
The crown-gall tissue of Vinca rosea converts labelled adenine into cytokinins. The principal initial products appear to be ribosylzeatin phosphates; zeatin and ribosylzeatin are also produced in appreciable quantities. The efficiency of conversion of adenine into cytokinins suggests a pathway of synthesis independent of turnover of tRNA. Isopentenyl adenine or its derivatives do not appear to be intermediates in the conversion of adenine to zeatin compounds. Cytokinins in V. rosea turnover rapidly and further metabolism of zeatin derivatives seems to result in their conversion into glucosides which are the main cytokinin active compounds in the tissue.Abbreviations HPLC high performance liquid chromatography - AMP adenosine monophosphate - TLC thin-layer chromatography - GLC gas-liquid chromatography  相似文献   

8.
The endogenous pool of cytokinin metabolites during sexual differentiation of Mercurialis annua L. was studied with a computerized gas-chromatography-mass spectrometry system. Certain metabolites were common to both sexes: ribosides (isopentenyl-adenosine, ribosylzeatin) and the nucleotide of I6-Ade. Zeatin could be detected only in females while its nucleotide was present in males. The results were obtained with differentiating apices and whole plants. The high Z concentration and the low level of its nucleotide are related to the absence of two dominant complementary genes, determining maleness. Study of the regulation of cytokinin metabolism now seems possible.Abbreviations IPA isopentenyl adenosine - I6-Ade isopentenyl adenine - Z zeatin - RZ ribosylzeatin  相似文献   

9.
Summary From 250 kg of fresh chicory roots about 2 mg of a crystalline cytokinin were obtained. This substance was identified as ribosylzeatin (trans isomer). From the procedure employed it seems unlikely that the isolated cytokinin comes from the degradation of tRNAs; rather, it may constitute a separate pool of cytokinins.  相似文献   

10.
11.
The metabolism of 14C-labeled 6-benzylaminopurine in aseptic cultures of Lemna minor was investigated. This cytokinin is slowly taken up by the plants; part of it can be released and part of it is rapidly metabolized to several compounds, among which the corresponding nucleotides can be identified. In this connection the feasibility of locating the site of hormone receptors (sites of primary action) in plants is discussed. Incorporation of the labeled cytokinin into Lemna tRNA was not observed, although tRNA hydrolysates, isolated from plants grown on a cytokinin-free medium, contain a fair amount of cytokinin activity and therefore presumably cy okinin molecules.  相似文献   

12.
Summary The cytokinins present in the spring sap of Acer pseudoplatanus L. were investigated. Ribosyl-trans-zeatin, trans-zeatin and dihydrozeatin were isolated and identified by combined gas chromatography-mass spectrometry (GC-MS). A number of other cytokinin active fractions were observed. One of these was less polar than zeatin and did not behave as any known cytokinin. Two other fractions were more polar than ribosylzeatin and were unstable. A decomposition product of one of these was identified as ribosyl-trans-zeatin by GC-MS. The possible nature of the unstable compounds is discussed. Data on the changes in cytokinin activity of the various fractions during spring 1973 are presented and discussed.Abbreviations GLC gas-liquid chromatography - GG-MS combined gas chromatography-mass spectrometry - KE kinetin equivalents - TLC thin-layer chromatography - TMS trimethylsilyl - tRNA transfer RNA - i6 Ade 6-(3-methylbut-2-enylamino)-purine - i6 Ado 6-(3-methylbut-2-enylamino)-9--D-ribofuranosyl-purine  相似文献   

13.
The biosynthesis of free cytokinins in the mevalonic acid auxotrophic Lactobacillus acidophilus , ATCC 4963 has been investigated. After a short pulse labelling with [14C]-mevalonic acid the labelled free cytokinins of bacteria and media and the labelled cytokinin-nucleotide moiety of tRNA and oligonucleotides were determined and compared. tRNA is the main precursor for cytokinin production. Bacteria previously starved for mevalonic acid showed the presence of at least one additional cytokinin precursor. A fraction of oligonudeotides shows rapid incorporation of 14C and contains labelled cytokinin nucleotides. There are no indications for a direct isopentenylation of adenine, adenosine or its phosphate derivatives.  相似文献   

14.
Laloue M  Hall RH 《Plant physiology》1973,51(3):559-562
Rhizopogon roseolus excretes the transfer RNA component, N-[9-(β-d-ribofuranosyl-9H) purin-6-ylcarbamoyl]threonine (Ado-CO-thr) into the culture medium. This compound was proposed to be the archetype of ureidopurines exhibiting cytokinin activity. The amount of Ado-CO-thr isolated from the medium is about one-twentieth the amount of ribosylzeatin that can be isolated.  相似文献   

15.
tRNA(6) (Leu) in Pisum sativum seed has been purified. This tRNA species contains a cytokinin-active nucleoside and accounts for approximately 7% of the total cytokinin activity in acid hydrolysates of pea tRNA. The cytokinin has been identified as ribosyl-cis-zeatin, 6-(4-hydroxy-3-methyl-cis-2-butenylamino) -9-beta-d-ribofuranosylpurine.  相似文献   

16.
Even in the absence of the classical Ti plasmid-encoded cytokinin biosynthetic genes ipt and tzs, Agrobacterium tumefaciens strains still release significant amounts of the cytokinin isopentenyladenine (iP) into the culture medium (R.W. Kaiss-Chapman and R.O. Morris [1977] Biochem Biophys Res Commun 76: 453-459). A potential source of the iP is isopentenylated transfer RNA (tRNA), which, in turn, is synthesized by the activity of tRNA:isopentenyltransferase encoded by the bacterial miaA gene. To determine whether secreted iP had its origin in isopentenylated tRNA, a miaA- deletion/insertion mutant was prepared and reconstructed in Agrobacterium tumefaciens in vivo. The mutant no longer possessed tRNA:isopentenylation activity and no longer released iP into the extracellular medium. Transfer RNA therefore makes a small but significant contribution to the total amount of cytokinin normally secreted by Agrobacterium strains. tRNA-mediated synthesis may also account for cytokinin production by other plant-associated bacteria, such as Rhizobia, that have been reported to secrete similarly low levels of nonhydroxylated cytokinins.  相似文献   

17.
Lateral roots are crucial for the plasticity of root responses to environmental conditions in soil. The bacterivorous microfauna has been shown to increase root branching and to foster auxin producing soil bacteria. However, information on modifications of plant internal auxin content by soil bacteria and bacterivores is missing. Therefore, the effects of a rhizosphere bacterial community and a common soil amoeba (Acanthamoeba castellanii) on root branching and on auxin (indole-3-acetic acid) metabolism in Lepidium sativum and Arabidopsis thaliana were investigated. In a first experimental series, bacteria increased conjugated auxin concentrations in L. sativum shoots, but did not alter free bioactive auxin content nor root branching. In contrast, in presence of soil bacteria plus amoebae free auxin concentrations in shoots and root branching increased, demonstrating that effects of bacteria on auxin metabolism in plants were strongly modified by the bacterivorous amoebae. In a second experiment, A. thaliana reporter plants for auxin (DR5) and cytokinin (ARR5) responded similarly with increased root branching in the presence of amoebae. Surprisingly, in reporter plants cytokinin but not auxin responses were detectable, accompanied by higher soil nitrate concentrations in the presence of amoebae. Likely, increased nitrate concentrations in the rhizosphere led to an accumulation of cytokinin and interactions with free auxin in plants and finally to increased root growth in the presence of amoebae. Altogether, the results show that mutual control mechanisms exist between plant hormone metabolism and microbial signalling, and that effects on hormonal concentrations of plants by free-living bacteria are strongly influenced by bacterial grazers like amoebae.  相似文献   

18.
The metabolism of trans-[8-14C]zeatin was examined in embryos of Phaseolus vulgaris cv Great Northern (GN) and P. lunatus cv Kingston (K) in an attempt to detect genetic variations in organized plant tissues. Metabolites were fractionated by HPLC, and identified by chemical and enzymic tests and GC-MS analyses. Five major metabolites were recovered from P. vulgaris embryo extracts: ribosylzeatin, ribosylzeatin 5′-monophosphate, an O-glucoside of ribosylzeatin, and two novel metabolites, designated as I and II. Based on results of degradation tests and GC-MS analyses, I and II were tentatively identified as O-ribosyl derivatives of zeatin and ribosylzeatin. In embryos of P. lunatus, however, metabolites I and II were not present. The major metabolites were ribosylzeatin, ribosylzeatin 5′-monophosphate, and the O-glucosyl derivatives of zeatin and ribosylzeatin. The zeatin metabolites recovered were the same for embryos of different sizes but their quantities varied with embryo size and incubation time. The genetic differences appear to be embryo-specific and may be useful in the studies of the possible relationship between abnormal interspecific hybrid embryo growth and hormonal derangement in Phaseolus. In addition, analyses of both organized (intact) and unorganized (callus) tissues of the same genotype may provide an opportunity to address the problem of differential expression of genes regulating cytokinin metabolism during plant development.  相似文献   

19.
It has been believed that the key step in cytokinin biosynthesis is the addition of a 5-carbon chain to the N(6) of AMP. To identify cytokinin biosynthesis enzymes that catalyze the formation of the isopentenyl side chain of cytokinins, the Arabidopsis genomic sequence was searched for genes that could code for isopentenyltransferases. This resulted in the identification of nine putative genes for isopentenyltransferases. One of these, AtIPT4, was subjected to detailed analysis. Overexpression of AtIPT4 caused cytokinin-independent shoot formation on calli. As shoot formation on calli normally occurs only when cytokinins are applied, it suggested that this gene product catalyzed cytokinin biosynthesis in plants. Recombinant AtIPT4 catalyzed the transfer of an isopentenyl group from dimethylallyl diphosphate to the N(6) of ATP and ADP, but not to that of AMP. AtIPT4 did not exhibit the DMAPP:tRNA isopentenyltransferase activity. These results indicate that cytokinins are, at least in part, synthesized from ATP and ADP in plants.  相似文献   

20.
Cytokinins are plant hormones which have long been associated with cell division and plastid differentiation. Recently, they have been found to play a central role also in the growth of plant tumors. Certain phytopathogenic bacteria, notably Agrobacterium tumefaciens and Pseudomonas syringae pv. savastanoi, can incite tumors on dicotyledonous plants and such tumors exhibit growth which is characteristic of the presence of excess auxin and cytokinin. Genes specifying cytokinin biosynthesis have now been isolated from both sets of bacteria. The genes encode prenyl transferase responsible for cytokinin biosynthesis which, upon expression in E. coli,cause the production of the active cytokinin, zeatin. Expression of these genes in association with the plant is responsible for at least part of the tumor phenotype, although the molecular mechanisms of infection by these bacteria are apparently quite dissimilar. There is extensive homology between the cytokinin biosynthetic genes from the two sets of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号