首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental studies indicate that angiotensin II (ANG II) through its type 1 receptor (AT(1)) promotes cardiovascular hypertrophy and fibrosis. Therefore, the aim of this study was to analyze whether chronic long-term inhibition of the renin-angiotensin system (RAS) can prevent most of the deleterious effects due to aging in the cardiovascular system of the normal rat. The main objective was to compare two strategies of ANG II blockade: a converting enzyme inhibitor (CEI) and an AT(1) receptor blocker (AT(1)RB). A control group remained untreated; treatment was initiated 2 wk after weaning. A CEI, enalapril (10 mg.kg(-1).day(-1)), or an AT(1)RB, losartan (30 mg.kg(-1).day(-1)), was used to inhibit the RAS. Systolic blood pressure, body weight, and water and food intake were recorded over the whole experimental period. Heart, aorta, and mesenteric artery weight as well as histological analysis of cardiovascular structure were performed at 6 and 18 mo. Twenty animals in each of the three experimental groups were allowed to die spontaneously. The results demonstrated a significant protective effect on the function and structure of the cardiovascular system in all treated animals. Changes observed at 18 mo of age in the hearts and aortas were quite significant, but each treatment completely abolished this deterioration. The similarity between the results detected with either enalapril or losartan treatment clearly indicates that most of the effects are exerted through AT(1) receptors. An outstanding finding was the significant and similar prolongation of life span in both groups of treated animals compared with untreated control animals.  相似文献   

2.
Renal fibrosis is the common pathological feature in a variety of chronic kidney diseases. Aging is highly associated with the progression of renal fibrosis. Among several determinants, mitochondrial dysfunction plays an important role in aging. However, the underlying mechanisms of mitochondrial dysfunction in age‐related renal fibrosis are not elucidated. Herein, we found that Wnt/β‐catenin signaling and renin–angiotensin system (RAS) activity were upregulated in aging kidneys. Concomitantly, mitochondrial mass and functions were impaired with aging. Ectopic expression of Klotho, an antagonist of endogenous Wnt/β‐catenin activity, abolished renal fibrosis in d ‐galactose (d ‐gal)‐induced accelerated aging mouse model and significantly protected renal mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species. In an established aging mouse model, dickkopf 1, a more specific Wnt inhibitor, and the mitochondria‐targeted antioxidant mitoquinone restored mitochondrial mass and attenuated tubular senescence and renal fibrosis. In a human proximal tubular cell line (HKC‐8), ectopic expression of Wnt1 decreased biogenesis and induced dysfunction of mitochondria, and triggered cellular senescence. Moreover, d ‐gal triggered the transduction of Wnt/β‐catenin signaling, which further activated angiotensin type 1 receptor (AT1), and then decreased the mitochondrial mass and increased cellular senescence in HKC‐8 cells and primary cultured renal tubular cells. These effects were inhibited by AT1 blocker of losartan. These results suggest inhibition of Wnt/β‐catenin signaling and the RAS could slow the onset of age‐related mitochondrial dysfunction and renal fibrosis. Taken together, our results indicate that Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction.  相似文献   

3.
Previous studies have shown that the renin-angiotensin system (RAS) is activated in diabetes and this may contribute to the subcellular remodelling and heart dysfunction in this disease. Therefore, we examined the effects of RAS blockade by enalapril, an angiotensin-converting enzyme inhibitor, and losartan, an angiotensin receptor AT1 antagonist, on cardiac function, myofibrillar and myosin ATPase activity as well as myosin heavy chain (MHC) isozyme expression in diabetic hearts. Diabetes was induced in rats by a single injection of streptozotocin (65 mg/kg; i.v.) and these animals were treated with and without enalapril (10 mg/kg/day; oral) or losartan (20 mg/kg/day; oral) for 8 weeks. Enalapril or losartan prevented the depressions in left ventricular rate of pressure development, rate of pressure decay and ventricular weight seen in diabetic animals. Both drugs also attenuated the decrease in myofibrillar Ca2+-ATPase, Mg2+-ATPase and myosin ATPase activity seen in diabetic rats. The diabetes-induced increase in beta-MHC content and gene expression as well as the decrease in alpha-MHC content and mRNA levels were also prevented by enalapril and losartan. These results suggest the occurrence of myofibrillar remodelling in diabetic cardiomyopathy and provide evidence that the beneficial effects of RAS blockade in diabetes may be associated with attenuation of myofibrillar remodelling in the heart.  相似文献   

4.
Angiotensin-converting enzyme inhibitors (ACEi) and AT-1 receptor blockers (ARB) are two types of drugs that inhibit the renin-angiotensin system (RAS), and can attenuate the progression to cardiac and/or renal functional impairment, secondary to diverse pathologies. Some of the beneficial effects of ACEi and ARB occur independently of the ability of these drugs to reduce arterial blood pressure. Both, in animals, and in humans, we observed an enhancement of antioxidant defenses that occurred after treatment with ACEi. Based on these results, we postulate that some of the beneficial health effects associated to RAS inhibition can be ascribed to the prevention of oxidant-mediated damage. Furthermore, considering that: (i). RAS inhibition attenuates certain age-associated degenerative changes; (ii). aging was postulated to result from the accumulation of oxidant-mediated damage; and (iii). mitochondria are a major source of oxidants, we studied potential associations among RAS inhibition, mitochondrial function and production of oxidants and nitric oxide, and aging. The results obtained suggest, that RAS inhibitors, i.e. enalapril and losartan, can protect against the effects of aging by attenuating oxidant damage to mitochondria, and in consequence, they preserve mitochondrial function. The mechanism(s) explaining such attenuation of oxidant damage can relay on a reduction of the ANG-II-dependent generation of superoxide and/or an increased detoxification of reactive nitrogen and oxygen species by recomposition of antioxidant defense levels.  相似文献   

5.
The aim of this work was to investigate the production of oxidative damage in homogenized kidney, liver and brain of spontaneously hypertensive rats (SHR), as well as the involvement of angiotensin (Ang) II in this process. Groups of 12-week-old SHR and Wistar Kyoto rats (WKY) were given 10 mg/kg/day losartan in the drinking water during 14 days. Other groups of WKY and SHR without treatment were used as controls. The production of thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (Gpx) were determined. No significant difference in TBARS was observed between untreated SHR or WKY rats; GSH content was lower in the liver but higher in the brain of SHR compared to WKY rats. In tissues from the SHR group, SOD and Gpx activities were reduced, whereas CAT activity was slightly increased in kidney. TBARS levels did not change in WKY rats after losartan administration, but were reduced in SHR liver and brain. Losartan treatment decreased GSH content in WKY kidney, but increased GSH in SHR liver. The activity of the antioxidant enzymes was not modified by losartan in WKY rats; however, their activities increased in tissues from treated SHR. The lower activity of antioxidant enzymes in tissues from hypertensive rats compared to those detected in normotensive controls, indicates oxidative stress production. Ang II seems to play no role in this process in normotensive animals, although AT1 receptor blockade in SHR enhances the enzymatic activity indicating that Ang II is implicated in oxidative stress generation in the hypertensive animals.  相似文献   

6.
No data are available about the effects of AT1 receptor antagonist losartan on the skeleton and there is also little information on the activity of an ACE inhibitor enalapril on bone metabolism. It is widely believed that the vasculature plays an important role in bone remodeling under normal and pathological conditions. We treated 14-week-old female Wistar rats with losartan, enalapril or saline. Administration of the ACE inhibitor enalapril and angiotensin II antagonist losartan had no effect on total malondialdehyde (MDA) in the blood and on urinary excretion of some eicosanoids and their metabolites. The administration of enalapril and losartan in a dose recommended for the treatment of hypertension did not cause significant changes in bone density, the ash and mineral content or morphometric parameters of the femur compared to the values found in control female rats.  相似文献   

7.
Pathological changes in glomerular structure are typically associated with the progression of diabetic nephropathy. The involvement of angiotensin II (AII) in pathogenesis of diabetic nephropathy has been extensively studied and the therapeutic advantages associated with blockade of renin-angiotensin system (RAS), primarily with angiotensin converting enzyme (ACE) inhibitors, has been well-documented. We studied the effect of RAS blockade with an AII receptor antagonist (losartan) vs. an ACE inhibitor (enalapril) on glomerular lesions in KKAy mice, a model of type 2 diabetes mellitus. Losartan was administered at 3 and 10 mg/kg/day and enalapril at 3 mg/kg/day for 14 weeks in the drinking water. The doses of losartan at 10 mg/kg/day was expected to be equivalent to 3 mg/kg/day of enalapril when considering clinical doses for lowering blood pressure. The dose of 3 mg/kg/day of losartan was selected to compare the efficacy at equivalent dose of enalapril. Histologic observation demonstrated suppression of glomerular mesangial expansion and glomerulosclerosis with exudative lesion in the 10 mg/kg/day losartan group when compared to the untreated diabetic controls. A lesser degree of glomerulosclerosis was also observed with losartan and enalapril treatment at 3 mg/kg/day. Ultrastructural examination of renal glomeruli from the high dose losartan group revealed a decreased degree of effacement and/or irregular arrangement of glomerular podocytic foot process. The beneficial effect of RAS inhibition with the AII receptor antagonist losartan on diabetic glomerular lesions was clearly demonstrated in this study. These findings, therefore, provide mechanistic explanation for the clinical utility of losartan for use in the treatment of diabetic nephropathy in man.  相似文献   

8.
Recent clinical and animal studies have shown that collateral artery growth is impaired in the presence of vascular risk factors, including hypertension. Available evidence suggests that angiotensin-converting enzyme inhibitors (ACEI) promote collateral growth in both hypertensive humans and animals; however, the specific mechanisms are not established. This study evaluated the hypothesis that collateral growth impairment in hypertension is mediated by excess superoxide produced by NAD(P)H oxidase in response to stimulation of the ANG II type 1 receptor. After ileal artery ligation, mesenteric collateral growth did not occur in untreated, young, spontaneously hypertensive rats. Significant luminal expansion occurred in collaterals of spontaneously hypertensive rats treated with the superoxide dismutase mimetic tempol, the NAD(P)H oxidase inhibitor apocynin, and the ACEI captopril, but not ANG II type 1 (losartan) or type 2 (PD-123319) receptor blockers. The ACEI enalapril produced equivalent reduction of arterial pressure as captopril but did not promote luminal expansion. This suggests the effects of captopril on collateral growth might result from its antioxidant properties. RT-PCR demonstrated that ANG II type 1 receptor and angiotensinogen expression was reduced in collaterals of untreated rats. This local suppression of the renin angiotensin system provides a potential explanation for the lack of effect of enalapril and losartan on collateral growth. The results demonstrate the capability of antioxidant therapies, including captopril, to reverse impaired collateral artery growth and the novel finding that components of the local renin angiotensin system are naturally suppressed in collaterals.  相似文献   

9.
Although activation of the renin-angiotensin system (RAS) is known to produce ventricular remodeling and congestive heart failure (CHF), its role in inducing changes in the sarcoplasmic reticulum (SR) protein and gene expression in CHF is not fully understood. In this study, CHF was induced in rats by ligation of the left coronary artery for 3 weeks and then the animals were treated orally with or without an angiotensin converting enzyme inhibitor, enalapril (10 mg/kg/day) or an angiotensin II receptor antagonist, losartan (20 mg/kg/day) for 4 weeks. Sham-operated animals were used as control. The animals were hemodynamically assessed and protein content as well as gene expression of SR Ca2+-release channel (ryanodine receptor, RYR), Ca2+-pump ATPase (SERCA2), phospholamban (PLB) and calsequestrin (CQS) were determined in the left ventricle (LV). The infarcted animals showed cardiac hypertrophy, lung congestion, depression in LV +dP/dt and –dP/dt, as well as increase in LV end diastolic pressure. Both protein content and mRNA levels for RYR, SERCA2 and PLB were decreased without any changes in CQS in the failing heart. These alterations in LV function as well as SR protein and gene expression in CHF were partially prevented by treatment with enalapril or losartan. The results suggest that partial improvement in LV function by enalapril and losartan treatments may be due to partial prevention of changes in SR protein and gene expression in CHF and that these effects may be due to blockade of the RAS.  相似文献   

10.
Previous studies have shown that the renin–angiotensin system (RAS) is activated in diabetes and this may contribute to the subcellular remodelling and heart dysfunction in this disease. Therefore, we examined the effects of RAS blockade by enalapril, an angiotensin-converting enzyme inhibitor, and losartan, an angiotensin receptor AT1 antagonist, on cardiac function, myofibrillar and myosin ATPase activity as well as myosin heavy chain (MHC) isozyme expression in diabetic hearts. Diabetes was induced in rats by a single injection of streptozotocin (65 mg/kg; i.v.) and these animals were treated with and without enalapril (10 mg/kg/day; oral) or losartan (20 mg/kg/day; oral) for 8 weeks. Enalapril or losartan prevented the depressions in left ventricular rate of pressure development, rate of pressure decay and ventricular weight seen in diabetic animals. Both drugs also attenuated the decrease in myofibrillar Ca2+-ATPase, Mg2+-ATPase and myosin ATPase activity seen in diabetic rats. The diabetes-induced increase in -MHC content and gene expression as well as the decrease in -MHC content and mRNA levels were also prevented by enalapril and losartan. These results suggest the occurrence of myofibrillar remodelling in diabetic cardiomyopathy and provide evidence that the beneficial effects of RAS blockade in diabetes may be associated with attenuation of myofibrillar remodelling in the heart. (Mol Cell Biochem 261: 271–278, 2004)  相似文献   

11.
Previous studies showed that a local pancreatic renin-angiotensin system (RAS) was upregulated in experimental acute pancreatitis. RAS inhibition could attenuate pancreatic inflammation and fibrosis, which casts a new light on the role of the pancreatic RAS in pancreatitis. The present study explores the prophylactic and therapeutic potentials, and possible molecular mechanism for the antagonism of angiotensin II receptors on the changes in the severity of pancreatic injury induced by acute pancreatitis. Experimental pancreatitis was induced by an intraperitoneal injection of supra-maximal dose of cerulein. The differential effects of angiotensin II receptors inhibitors losartan and PD123319 on the pancreatic injury were assessed by virtue of using the pancreatic water content, biochemical and histological analyses. Blockade of the AT(1) receptor by losartan at a dose of 200microg/kg could markedly ameliorate the pancreatic injury induced by cerulein, as evidenced by biochemical and histopathological studies. However, blockade of the AT(2) receptor by PD123319 appeared not to provide any beneficial role in cerulein-induced pancreatic injury. Both prophylactic and therapeutic treatments with losartan were effective against cerulein-induced pancreatic injury. The protective action of losartan was linked to an inhibition of NAD(P)H oxidase activity, thus consequential oxidative modification of pancreatic proteins in the pancreas. Inhibition of the AT(1) receptor, but not AT(2) receptor, may play a beneficial role in ameliorating the severity of acute pancreatitis. The differential effects of AT(1) and AT(2) inhibitors on cerulein-induced pancreatic injury might be due to the distinctive mechanism of the AT(1) and AT(2) receptors on the activation of NAD(P)H oxidase. Thus the protective role of AT(1) receptor antagonist, losartan, could be mediated by the inhibition of NAD(P)H oxidase-dependent generation of reactive oxygen species (ROS).  相似文献   

12.
Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang‐(1‐7)/Mas receptor axis, renin‐angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT‐PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up‐regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang‐(1‐7) in organ response to the developing hypertension in SHRs.  相似文献   

13.
The renal and cardiac benefits of renin-angiotensin system (RAS) inhibition in hypertension exceed those attributable to blood pressure reduction, and seem to involve mitochondrial function changes. To investigate whether mitochondrial changes associated with RAS inhibition are related to changes in nitric oxide (NO) metabolism, four groups of male Wistar rats were treated during 2 wk with a RAS inhibitor, enalapril (10 mg x kg(-1) x day(-1); Enal), or a NO synthase (NOS) inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME) (1 mg x kg(-1) x day(-1)), or both (Enal+L-NAME), or were untreated (control). Blood pressure and body weight were lower in Enal than in control. Electron transfer through complexes I to III and cytochrome oxidase activity were significantly lower, and uncoupling protein-2 content was significantly higher in kidney mitochondria isolated from Enal than in those from control. All of these changes were prevented by L-NAME cotreatment and were accompanied by a higher production/bioavailability of kidney NO. L-NAME abolished mitochondrial NOS activity but failed to inhibit extra-mitochondrial kidney NOS, underscoring the relevance of mitochondrial NO in those effects of enalapril that were suppressed by L-NAME cotreatment. In Enal, kidney mitochondria H(2)O(2) production rate and MnSOD activity were significantly lower than in control, and these effects were not prevented by L-NAME cotreatment. These findings may clarify the role of NO in the interactions between RAS and mitochondrial metabolism and can help to unravel the mechanisms involved in renal protection by RAS inhibitors.  相似文献   

14.
Parlakpinar H  Ozer MK  Acet A 《Cytokine》2011,56(3):688-694
The renin-angiotensin system (RAS) plays a major role in regulating the cardiovascular system, and disorders of the RAS contribute largely to the cardiac pathophysiology, including myocardial ischemia-reperfusion (MI/R) injury. Two subtypes of angiotensin II (Ang II) receptors have been defined on the basis of their differential pharmacological properties. The current study was undertaken to address the question as to whether the inhibition of the angiotensin converting enzyme (ACE) by captopril and the AT1 and AT2 receptor blockers losartan and PD123319 modulate MI/R-induced infarct size in an in vivo rat model. To produce necrosis, a branch of the descending left coronary artery was occluded for 30 min followed by two hours of reperfusion. ECG changes, blood pressure, and heart rate were measured during the experiment. Captopril (3 mg/kg), losartan (2 mg/kg), and PD123319 (20 μg/kg/min) were given in an IV 10 min before ischemia and were continued during the ischemic period. The infarcted area was measured by TTC staining. The volume of infarct and the risk zone was determined by planimetry. Compared to the control group (55.62±4.00%) both captopril and losartan significantly reduced the myocardial infarct size (30.50±3.26% and 37.75±4.44%), whereas neither PD123319 nor PD123319+losartan affected the infarct size volume (46.50±3.72% and 54.62±2.43%). Our data indicates that captopril and losartan exert cardioprotective activity after an MI/R injury. Also, infarct size reduction by losartan was halted by a blockade of the AT2 receptor. Therefore, the activation of AT2 receptors may be potentially protective and appear to oppose the effects mediated by the AT1 receptors.  相似文献   

15.
Maternal low protein diet programs offspring to develop hypertension as adults. Transient exposure to angiotensin converting enzyme inhibitors or angiotensin II receptor blockers can result in improvement in hypertension. Male rats whose mothers received a low protein diet during the last half of pregnancy were given either vehicle, continuous enalapril (CE) in their drinking water or were given transient enalapril exposure (TE) after weaning at 21 days of age. The TE group had enalapril in their drinking water for 21 days starting from day 21 of life. All rats were studied at 6 months of age. Vehicle treated rats whose mothers were fed a low protein diet were hypertensive, had albuminuria, and demonstrated upregulation of the intrarenal renin-angiotensin system as evidenced by higher urinary angiotensinogen and urinary angiotensin II levels. In low protein rats both continuous and transient exposure to enalapril normalized blood pressure, urinary angiotensinogen and urinary angiotensin II levels at 6 months of age, but only continuous administration of enalapril decreased urinary albumin excretion. These data support the importance of the intrarenal renin-angiotensin system in mediating hypertension in programmed rats and transient exposure to enalapril can reprogram the hypertension and dysregulation of the intrarenal renin-angiotensin system.  相似文献   

16.
Thrombocytopenia is independently related with increased mortality in severe septic patients. Renin-angiotensin system (RAS) is elevated in septic subjects; accumulating studies show that angiotensin II (Ang II) stimulate the intrinsic apoptosis pathway by promoting reactive oxygen species (ROS) production. However, the mechanisms underlying the relationship of platelet apoptosis and RAS system in sepsis have not been fully elucidated. The present study aimed to elucidate whether the RAS was involved in the pathogenesis of sepsis-associated thrombocytopenia and explore the underlying mechanisms. We found that elevated plasma Ang II was associated with decreased platelet count in both patients with sepsis and experimental animals exposed to lipopolysaccharide (LPS). Besides, Ang II treatment induced platelet apoptosis in a concentration-dependent manner in primary isolated platelets, which was blocked by angiotensin II type 1 receptor (AT1R) antagonist losartan, but not by angiotensin II type 2 receptor (AT2R) antagonist PD123319. Moreover, inhibiting AT1R by losartan attenuated LPS-induced platelet apoptosis and alleviated sepsis-associated thrombocytopenia. Furthermore, Ang II treatment induced oxidative stress level in a concentration-dependent manner in primary isolated platelets, which was partially reversed by the AT1R antagonist losartan. The present study demonstrated that elevated Ang II directly stimulated platelet apoptosis through promoting oxidative stress in an AT1R-dependent manner in sepsis-associated thrombocytopenia. The results would helpful for understanding the role of RAS system in sepsis-associated thrombocytopenia.  相似文献   

17.
S Li  P Wu  S Zhong  Z Guo  W Lai  Y Zhang  X Liang  J Xiu  J Li  Y Liu 《Hormone research》2001,55(6):293-297
BACKGROUND: Plasma aldosterone escape is found during long-term angiotensin-converting enzyme inhibitor therapy. Evidence for aldosterone production in cardiovascular tissues raised the question of whether or not aldosterone escape occurs in these tissues. METHOD: Spontaneously hypertensive rats were treated with enalapril (20 mg/kg/day) and losartan (50 mg/kg/day) for 20 weeks; untreated spontaneously hypertensive and Wistar rats were used as positive and normal controls, respectively. Ex vivo mesenteric artery and heart perfusion, high-performance liquid chromatography, and radioimmunoassay for aldosterone were performed. RESULTS: The results showed that enalapril failed to significantly inhibit aldosterone production in mesenteric artery, myocardium and plasma. Losartan significantly inhibited aldosterone production to that of Wistar rats in the mesenteric artery, myocardium and plasma. CONCLUSION: This study provides the first evidence that long-term angiotensin-converting enzyme inhibition therapy induces aldosterone escape in hypertensive cardiovascular tissues, and angiotensin II subtype 1 receptor antagonist does not induce aldosterone escape in mesenteric artery, myocardium and plasma of spontaneously hypertensive rats.  相似文献   

18.

Background

The associations between obesity, hypertension and diabetes are well established, and the renin-angiotensin system (RAS) may provide a link among them. The effect of RAS inhibition on type 2 diabetes is still unclear; however, RAS seems to play an important role in the regulation of the pancreas and glucose intolerance of mice fed high-fat (HF) diet.

Methods

C57BL/6 mice fed a HF diet (8 weeks) were treated with aliskiren (50 mg/kg/day), enalapril (30 mg/kg/day) or losartan (10 mg/kg/day) for 6 weeks, and the protective effects were extensively compared among groups by morphometry, stereological tools, immunostaining, Western blotting and hormonal analysis.

Results

All RAS inhibitors significantly attenuated the increased blood pressure in mice fed a HF diet. Treatment with enalapril, but not aliskiren or losartan, significantly attenuated body mass (BM) gain, glucose intolerance and insulin resistance, improved the alpha and beta cell mass and prevented the reduction of plasma adiponectin. Furthermore, enalapril treatment improved the protein expression of the pancreatic islet Pdx1, GLUT2, ACE2 and Mas receptors. Losartan treatment showed the greatest AT2R expression.

Conclusion

Our findings indicate that ACE inhibition with enalapril attenuated several of the deleterious effects of the HF diet. In summary, enalapril appears to be responsible for the normalization of islet morphology and function, of alpha and beta cell mass and of Pdx1 and GLUT2 expression. These protective effects of enalapril were attributed, primarily, to the reduction in body mass gain and food intake and the enhancement of the ACE2/Ang (1-7) /Mas receptor axis and adiponectin levels.  相似文献   

19.
This study examined the effect of the pharmacological manipulation of adrenal renin-angiotensin system (RAS) on aldosterone secretion from in situ perfused adrenals of rats kept on a normal diet and sodium restricted for 14 days. Neither the angiotensin-converting enzyme inhibitor captopril nor the nonselective angiotensin II receptor antagonist saralasin and the AT(1) receptor-selective antagonist losartan affected basal aldosterone output in normally fed rats. In contrast, they concentration dependently decreased aldosterone secretion in sodium-restricted animals, with maximal effective concentration ranging from 10(-7) to 10(-6) M. Captopril (10(-6) M), saralasin (10(-6) M), and losartan (10(-7) M) counteracted aldosterone response to 10 mM K(+) in sodium-restricted rats but not in normally fed animals. Collectively, these findings provide evidence that adrenal RAS plays a role in the regulation of aldosterone secretion, but only under conditions of prolonged stimulation of zona glomerulosa probably leading to overexpression of adrenal RAS.  相似文献   

20.
In this study, we examined the effects of angiotensin II (AngII) in a genetic in vitro PD model produced by alpha-synuclein (alpha-syn) overexpression in the human neuroglioma H4 cell line. We observed a maximal decrease in alpha-syn-induced toxicity of 85% and reduction in inclusion formation by 19% when cultures were treated with AngII in the presence of the angiotensin type 1 (AT1) receptor antagonist losartan and AT2 receptor antagonist PD123319. When compared to AngII, the AT4 receptor agonist AngIV was moderately effective in protecting H4 cells against alpha-syn toxicity and did not significantly reduce inclusion formation. Here we show that AngII is protective against genetic, as well as neurotoxic models of PD. These data support the view that agents acting on the renin-angiotensin-system (RAS) may be useful in the prevention and/or treatment of Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号