首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Based on incorporation of radioactively labeled N-ethylmaleimide, the readily reactive thiol groups of isolated myosin (EC 3.6.1.3) from fast, slow and cardiac muscles could be classified into 3 types. All 3 myosins contain 2 thiol-1, 2 thiol-2 and a variable number of thiol-3 groups per molecule. Both thiol-1 and thiol-2 groups which are essential for functioning of the K+-stimulated ATPase, are located in the heavy chains in all 3 myosin types. 2. The variation in the incorporation pattern of N-ethylmaleimide over the 3 thiol group classes under steady-state conditions of Mg(2+) - ATP hydrolysis allowed different conformations of some reaction intermediates to be characterized. In all 3 types of myosin the hydrolytic cycle of Mg(2+) - ATP was found to be controlled by the same step at 25 degrees C. In all three cases, this rate-limiting step is changed in the same way by lowereing temperature. 3. Using the chemically determined molecular weights for myosin light chains, their stoichiometry was found on the basis of sodium dodecyl sulfate electrophoresis to be 1.2 : 2.1 : 0.8 for light chain-1: light chain-2:light chain-3 per molecule of fast myosin, 2.0 : 1.9 for light chain-1:light chain-2 per molecule of slow myosin and 1.9 : 1.9 for light chain-1:light chain-2 per molecule of cardiac myosin. This qualitative difference in light subunit composition between the fast and the two types of slow myosin is not reflected in the small variations of the characteristics exhibited by the isolated myosins, but rather seems to be connected with their respective myofibrillar ATPase activities.  相似文献   

2.
The conformations of the transitory intermediates of the myosin ATPase occurring during the hydrolytic cycle, enzyme without ligand, enzyme-substrate complex and two different forms of enzyme-product complex, have been characterized in terms of numbers and classes of reactive thiol groups based on incorporation of radioactively labeled alkylation reagent. The techniques employed allowed this to be done under steady-state conditions in the presence of high ligand concentrations on intact myosin from rabbit fast skeletal muscles at low ionic strength where the protein is in the gel state as it is in muscle. The binding of a divalent cation (Mg2+ or Ca2+) nucleotide complex exposes thiol-1 as well as thiol-2 groups. The long-lived ATPase intermediate occurring at temperatures above 10 degrees C adopts the same conformation with Mg2+ and Ca2+ ions. This intermediate does not protect the thiol-1 and thiol-2 groups but exposes a number of thiol-3 groups which seem to be located distant from the active site. The conformation of the intermediate prevailing in the presence of ATP changes with lowering temperature below 10 degrees C and is identical with that found in the presence of ADP at 0 degree C indicating a change in the rate-limiting step of the hydrolytic cycle. In the absence of divalent cations no such temperature-dependent change in conformation was observed. Evaluation of the activation entropies shows that the structure of the long-lived intermediate occurring above 10 degrees C in the presence of Mg2+ ions goes through a transformation from low to high order at around 20 degrees C. In the case of the monovalent-cation-stimulated ATPase a constant activation energy of around 70 kJ/mol, typical of many enzyme reactions, was found over the entire temperature range from 0--35 degrees C.  相似文献   

3.
Myosin modified in the presence or in the absence of pyrophosphate by 2,4-dinitrophenyl beta-hydroxyethyl disulphide was treated with iodo[1-(14)C]acetamide. The residual Ca(2+)-stimulated adenosine triphosphatase (ATPase) activity of the modified myosin was different depending on the presence or absence of PP(i) during modification and the number of 2,4-dinitrophenyl beta-hydroxyethyl disulphide-modified thiol groups. The radioactivity incorporated into the light components of myosin correlated with the Ca(2+)-stimulated ATPase activity of the modified myosin and decreased with decreasing residual Ca(2+)-stimulated ATPase activity of the modified myosin. When native myosin was treated with low concentrations of iodo[1-(14)C]acetamide the residual Ca(2+)-stimulated ATPase activity of carboxyamidomethylated myosin was high and the radioactivity incorporated into the light components of myosin was negligible. The thiol groups of the light components of myosin are essential to preserve the ATPase activity of the protein and are close to the pyrophosphate-binding sites.  相似文献   

4.
The specificity of the fluorescent reagent N-iodoacetyl-N-(5-sulfo-1-naphthyl)ethylenediamine (1,5 IAEDANS) for a specific thiol group of myosin has been characterized by a comparison with iodoacetamide (IAA) and by observing maximal enhancement of the Ca2+-ATPase activity and inhibition of the K+-EDTA-ATPase activity of myosin. The stoichiometry of the [3H]1,5 IAEDANS bound to myosin indicates the presence of two fast-reacting thiols which correspond to the “SH1” groups responsible for the catalytic properties of myosin. Moreover, it has been unequivocally demonstrated by gel electrophoresis that the fast-reacting thiol is located on the myosin heavy chain. A single radioactivity-labeled thiol peptide obtained from tryptic digests of myosin labeled with [3H]1,5 IAEDANS or iodo[1-14C]acetamide indicates strongly that the identical thiol was labeled by both reagents.  相似文献   

5.
2,4-Dinitrophenyl [1-14C]cysteinyl disulfide readily introduces by disulfide exchange [14C]cysteine as a label into proteins with exposed thiols. The release of an equivalent amount of colored 2,4-dinitrothiophenolate allows the labeling reaction to be followed spectrophotometrically. In reaction with two cysteine residues of rabbit skeletal muscle actin, the thiol selectivity of the reagent corresponded to that of 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent) and was superior to that of N-[14C]ethylmaleimide. Labeling of single SH groups of actin and papain proceeded faster than titration with Ellman's reagent under the same conditions. The [14C]cysteine label could be removed under mild conditions, e.g., with dithiothreitol, but proved to be stable during cyanogen bromide degradation of the protein and peptide purification. 2,4-Dinitrophenyl cysteinyl disulfide can be easily prepared within a few hours.  相似文献   

6.
We present a new method to specifically and stably label proteins by attaching extrinsic probes to amino acids that are thiophosphorylated by protein kinases and ATP gamma S. The method was demonstrated for labeling of a thiophosphorylatable serine of the isolated regulatory light chain of smooth muscle myosin. We stoichiometrically blocked the single thiol (Cys-108) either by forming a reversible intermolecular disulfide bond or by reacting with iodoacetic acid. The protein was stoichiometrically thiophosphorylated at Ser-19 by myosin light chain kinase and ATP gamma S. The nucleophilic sulfur of the protein phosphorothioate was coupled at pH 7.9 and 25 degrees C to the fluorescent haloacetate [3H]-5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1- sulfonic acid ([3H]IAEDANS) by displacement of the iodide. Typical labeling efficiencies were 70-100%. The labeling was specific for the thiophosphorylated Ser-19, as determined from the sequences of two labeled peptides isolated from a tryptic digest of the labeled protein. [3H]IAEDANS attached to the thiophosphorylated Ser-19 was stable at pH 3-10 at 25 degrees C, and to boiling in high concentrations of reductant. The labeled light chains were efficiently exchanged for unlabeled regulatory light chains of the whole myosin molecule. The resulting labeled myosin had normal ATPase activities in the absence of actin, indicating that the modification of Ser-19 and the exchange of the labeled light chain into myosin did not significantly disrupt the protein. The labeled myosin partially retained the elevated actin-activated Mg(2+)-ATPase activity which is characteristic of thiophosphorylated myosin. This indicates that labeling of the thiophosphate group with [3H]IAEDANS did not completely disrupt the functional properties of the thiophosphorylated protein in the presence of actin.  相似文献   

7.
The carbohydrate binding stoichiometry of lima bean lectin component III was reexamined using equilibrium dialysis and quantitative affinity chromatography following limited chemical modification. Equilibrium dialysis employing methyl[2-14C]benzamido-2-deoxy-alpha-D-galactopyranoside as ligand demonstrated that the lectin tetramer bound 4 mol of sugar with Kassoc = 1.44 +/- 0.13 X 10(3) M-1 (T = 5 degrees C, pH 7.0, ionic strength 0.1). The previous report of two sites/tetramer [Bessler, W. and Goldstein, I. J. (1974) Arch. Biochem. Biophys. 165, 444] appears to be the result of partial inactivation of the lectin due to oxidation of essential thiol groups. Following limited chemical modification of the thiol groups by methyl methanethiosulfonate, multiple intermediate forms with reduced affinity for Synsorb A were obtained. The number and hemagglutinating activities of these intermediates provided further support for the presence of four carbohydrate binding sites on lima bean lectin component III.  相似文献   

8.
Identification of the thiol ester linked lipids in apolipoprotein B   总被引:4,自引:0,他引:4  
G Huang  D M Lee  S Singh 《Biochemistry》1988,27(5):1395-1400
Human plasma low-density lipoproteins of 1.032-1.043 g/mL density were totally delipidized. The reduced and carboxymethylated apolipoprotein B was incubated with 50 mM [14C]methylamine at pH 8.5 at 30 degrees C. Covalent incorporation of [14C]methylamine was observed with concomitant generation of new sulfhydryl groups, which could be blocked with [3H]- or [14C]iodoacetic acid. One type of the [14C]methylamine-modified products was separated from the protein and was found to be lipid in nature. Its Rf on thin-layer chromatography (TLC) was similar to that of the synthetic N-methyl fatty acyl amides. After purification with TLC and transesterification in 3 N methanolic HCl, methyl esters of C16 and C18 fatty acids at 1:1 ratio were identified by gas-liquid chromatography. The transesterification method was verified with the known N-methyl fatty acyl amides. These results suggest the presence of labile thiol ester linked palmitate and stearate in apolipoprotein B. Under mild alkaline conditions, the thiol ester bonds are broken by methylamine and form N-methyl fatty acyl amides and release new-SH groups. Intramolecular thiol ester bonds linked between cysteine side chains and acidic amino acid residues were also found present, which will be reported separately.  相似文献   

9.
An ADP-ribosylarginine hydrolase, which catalyzes the degradation of ADP-ribosyl[14C]arginine to ADP-ribose plus arginine, was separated by ion exchange, hydrophobic, and gel permation chromatography from NAD:arginine ADP-ribosyltransferases, which are responsible for the stereospecific formation of alpha-ADP-ribosylarginine. As determined by NMR, the specific substrate for the hydrolase was alpha-ADP-ribosylarginine, the product of the transferase reaction. The ADP-ribose moiety was critical for substrate recognition; (phosphoribosyl) [14C]arginine and ribosyl[14C]arginine were poor substrates and did not significantly inhibit ADP-ribosyl[14C]arginine degradation. In contrast, ADP-ribose was a potent inhibitor of the hydrolase and significantly more active than ADP greater than AMP greater than adenosine. In addition to ADP-ribosyl[14C]arginine, both ADP-ribosyl[14C]guanidine and (2'-phospho-ADP-ribosyl)[14C]arginine were also substrates; at pH greater than 7, ADP-ribosyl[14C]guanidine was degraded more readily than the [14C]arginine derivative. Neither arginine, guanidine, nor agmatine, an arginine analogue, was an effective hydrolase inhibitor. Thus, it appears that the ADP-ribosyl moiety but not the arginine group is critical for substrate recognition. Although the hydrolase requires thiol for activity, dithiothreitol accelerated loss of activity during incubation at 37 degrees C. Stability was enhanced by Mg2+, which is also necessary for optimal enzymatic activity. The findings in this paper are consistent with the conclusion that different enzymes catalyze ADP-ribosylarginine synthesis and degradation. Furthermore, since the hydrolase and transferases possess a compatible stereospecificity and substrate specificity, it would appear that the two enzymatic activities may serve as opposing arms in an ADP-ribosylation cycle.  相似文献   

10.
By means of spin labeled analogs of ATP we have shown that conformational changes in myosin molecule induced by variation of temperature take place in the region of the active centre. In case of Mg-ATP and unmodified myosin conformation of the active centre changes monotonously with the change in temperature but after the modification of S1 thiol groups by N-ethylmaleimide on the temperature dependence curve of rotational mobility of the spin label a discontinuous is observed at 14-16 degrees C. It is also observed in case of K+-EDTA-ATP, or Ca2+-ATP and unmodified myosin. It is shown that the chemical analogs of Mg2+-paramagnetic ion Mn2+ are directly connected with the myosin active centre in the presence of ATP(ADP), i. e. a triple complex enzyme-bivalent cation-substrate is formed.  相似文献   

11.
The pattern of incorporation of [14C]N-ethylmaleimide (MalNEt) into gizzard myosin indicates the presence of two classes of thiols: rapidly and slowly modified. The first class contains two thiol residues, SH-A and SH-B, located in the myosin rod and the 17-kDa light chain, respectively, while the second contains at least two thiols located in the myosin heavy chain. Changes in ATPase activities upon modification occur rapidly or slowly, paralleling reaction of either the first or second class of thiols. Rapid changes include increases in the Ca2+- and Mg2+-activated activities of myosin alone, measured at ionic strengths below 0.3 M, and an increase and a decrease in the actin-activated activity of dephosphorylated and phosphorylated myosin, respectively. Modification of SH-A and SH-B with MalNEt is accompanied by stabilization of myosin filaments, seen as an increase in light-scattering intensity, and by destabilization of the folded, 10 S conformation of the myosin monomer. In the presence of 0.175 M NaCl and 1 mM MgATP, unmodified and MalNEt-modified myosin sediment in the ultracentrifuge as single components at 10.0 S and 6.0 S, respectively. The MalNEt-induced increase in the Ca2+- or Mg2+-activated ATPase activity, measured in the absence of actin, can be attributed either to stabilization of filaments or to destabilization of the 10 S conformation, depending on the ionic strength of the assay. Modification of the second class of thiols is accompanied by a decrease in K+-EDTA-activated activity and an increase in Ca2+-activated activity measured above 0.3 M NaCl, where myosin neither forms filaments nor assumes the 10 S conformation. These slow changes are characteristic of blocking the SH-1 thiols of skeletal-muscle myosin, but in gizzard myosin are attributable to modification of a less reactive thiol, SH-C.  相似文献   

12.
The two globular head portions, each bearing an active site, contain an uncleaved heavy chain when isolated by chymotrypsin from intact myosin. By specific labeling with radioactive N-ethylmaleimide the essential thiol 1 and thiol 2 groups were found to reside in this heavy chain. In intact myosin nonessential thiol 3 groups become the most reactive during ATP hydrolysis above 15 degrees C. These thiol 3 groups are located in a portion of the myosin heavy chain which appears as a fragment with an apparent molecular weight of 11 000 during proteolysis. The facts that this fragment is produced in an almost 1: 1 molar ratio with the head heavy chain and that it bears unblocked N-terminal amino groups whereas the heavy chain does not and is not contained in the rod portion of the myosin molecule indicate that it may orginate from the heavy chains in the neck region where the heads are joined to the rod. Since this fragment is removed by ion-exchange chromatography, it is not part of the functioning head and hence not involved in the active site. As its nonessential thiol 3 groups are rendered the most reactive of all thiol groups in the enzyme-product complex M**ADP.Pi, the hydrolytic step induces an allosteric conformational change in the neck region of intact myosin.  相似文献   

13.
The effects of temperature, Mg2+, ATP, and actin on the conformation of the neck region of the myosin head were studied by limited proteolysis of heavy meromyosin (HMM) and subfragment 1 (S1) preparations obtained by papain digestion of myosin in the presence of Mg2+ (Mg-S1) or EDTA (EDTA-S1). The preparations were fluorescently labelled at the SH1 thiol group to enable identification of the COOH-terminal fragments of the head portion of the heavy chain where this group is located. The results indicate that the head-rod junctional region of the myosin heavy chain contains at least three different sites readily susceptible to trypsin at 25 degrees C if the light chain LC2 or its LC2' fragment are absent. The susceptibility of one of these sites dramatically decreases when the temperature is lowered to 0 degree C, indicating a temperature-dependent conformational transition in the head-rod junction. With the method used, this transition is detectable only in LC2/LC'2-deficient preparations since all three sites are protected, although to different extents, by LC2 and its LC'2 derivative. It is, however, most probable that the effect of the light chain is confined to steric hindrance of trypsin access and that the temperature-dependent structural transition in the head-rod junction can occur in the presence of intact LC2 as well and may contribute to the temperature sensitivity of force generation in muscle.  相似文献   

14.
Proteins extracted with 6 M guanidine at 90 degrees C from conidia (asexual spores) of Neurospora crassa contained ca. 25% more total protein thiol and a fivefold-higher content of disulfide bonds than proteins extracted from mycelia, as determined by labeling with iodo[14C]acetic acid. The total thiol content was 88 mumol/g of protein in conidia and 70 mumol/g of protein in mycelia. The level of protein disulfide was 18.5 mumol/g of protein in conidia and 3.5 mumol/g of protein in mycelia, by the iodo[14C]acetic acid labeling method. Confirmatory results were obtained with 5'5-dithio-bis-2-nitrobenzoic acid titration of protein thiol groups in 1% sodium dodecyl sulfate as well as by amino acid analysis of cysteic acid derivatives. Buffer-extracted proteins from conidia, but not mycelia, were found to contain enriched levels of protein thiols and disulfides per gram of protein as compared with guanidine hydrochloride extracts. It was demonstrated that the high disulfide content of crude conidial extracts was not due to measurable levels of mixed disulfides formed between protein sulfhydryl groups and cysteine. During germination of the conidia, the high disulfide levels of the conidial proteins remained constant. These data suggest that, unlike the disulfides of glutathione, the bulk of conidial protein disulfides were not reduced, excreted, or extensively degraded during germination.  相似文献   

15.
Using bovine vesicular gland microsomes and [14C]indomethacin we demonstrated the presence of a specific binding site for nonsteroidal anti-inflammatory drugs. Specific binding of [14C]indomethacin to microsomes was rapid, with most of the ligand bound by 2 min at 4 degrees C. In routine binding assays the incubation temperature was maintained at 4 degrees C, because the maximal specific binding was obtained. Specific [14C]indomethacin binding appeared to increase linearly with increasing protein concentration over the range of 0.1-1.0 mg of microsomal protein. Specific binding was saturable and Scatchard analysis of binding data showed a single class of binding sites with a dissociation constant (Kd) of 3.8 microM and a maximal number of binding sites (Bmax) of about 1272 pmol/mg of protein. When these binding data were plotted according to the Hill equation, a straight line was obtained with a Hill coefficient of 1.0. Structural specificity of the nonsteroidal anti-inflammatory drug site was studied with diclofenac, arylpropionic acids (ketoprofen and indoprofen), and aspirin. Diclofenac and arylpropionic derivatives were able to compete with [14C]indomethacin for binding to microsomes, while aspirin was a weak inhibitor.  相似文献   

16.
Myelin proteolipid protein (PLP) is known to contain long-chain, covalently bound fatty acids. Previous studies, including our own, have suggested the occurrence of an oxyester type of linkage between fatty acids and PLP. However, we found that protein-SH groups are required in the acylation reaction, suggesting the possible presence of thioesters. In the present study, we have examined the nature of the acyl-PLP linkages by determining whether free thiol groups are generated on removal of fatty acids. Incubation of reduced and carboxyamidomethylated proteolipid apoprotein (RCM-APL) with 0.2 M hydroxylamine and [14C]iodoacetamide at pH 7.5 and 37 degrees C resulted in the release of fatty acids and the concomitant labeling of newly formed thiol groups. Incubation with Tris or methylamine at pH 7.5 failed to remove fatty acids and generate free -SH groups. The possibility that on treatment buried thiol groups became exposed was essentially excluded because (1) similar results were obtained in 2-chloroethanol, a solvent in which acylated and deacylated PLP have the same conformation, and (2) small PLP peptides were labeled only in the presence of hydroxylamine. On incubation with [14C]methylamine at pH 9.0, RCM-APL was not labeled, thus excluding the occurrence of intramolecular thiol esters. On the other hand, fatty acids were released as radioactive N-methyl fatty acylamide, indicating the presence of intermolecular thioesters between fatty acids and protein. These results demonstrate that a large proportion of fatty acids covalently bound to PLP are liked to -SH groups.  相似文献   

17.
Analysis of the equilibrium binding of [3H]-neurotensin(1-13) at 25 degrees C to its receptor sites in bovine cortex membranes indicated a single population of sites with an apparent equilibrium dissociation constant (KD) of 3.3 nM and a density (Bmax) of 350 fmol/mg protein (Hill coefficient nH = 0.97). Kinetic dissociation studies revealed the presence of a second class of sites comprising less than 10% of the total. KD values of 0.3 and 2.0 nM were obtained for the higher and lower affinity classes of sites, respectively, from association-dissociation kinetic studies. The binding of [3H]neurotensin was decreased by cations (monovalent and divalent) and by a nonhydrolysable guanine nucleotide analogue. Competition studies gave a potency ranking of [Gln4]neurotensin greater than neurotensin(8-13) greater than neurotensin(1-13). Smaller neurotensin analogues and neurotensin-like peptides were unable to compete with [3H]neurotensin. Stable binding activity for [3H]neurotensin in detergent solution (Kd = 5.5 nM, Bmax = 250 fmol/mg protein, nH = 1.0) was obtained in 2% digitonin/1 mM Mg2+ extracts of membranes which had been preincubated (25 degrees C, 1 h) with 1 mM Mg2+ prior to solubilization. Association-dissociation kinetic studies then revealed the presence of two classes of sites (KD1 = 0.5 nM, KD2 = 3.6 nM) in a similar proportion to that found in the membranes. The solubilized [3H]-neurotensin activity retained its sensitivity to cations and guanine nucleotide.  相似文献   

18.
J C Wu  J Lin  H Chuan  J H Wang 《Biochemistry》1989,28(22):8905-8911
The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl) [alpha-32P]ATP (FDNP-[alpha-32P]ATP) and 3'-O-(5-fluoro-2,4-dinitrophenyl) [8-14C]ATP (FDNP-[14C]ATP) were synthesized and used to characterize the structure and function of the three active sites in F1-ATPase. FDNP-[alpha-32P]ATP was found to bind covalently to F1 up to two DNP-[alpha-32P]ATP labels per F1 in the absence of Mg2+ without decreasing the ATPase activity. However, when MgCl2 was subsequently added to the reaction mixture, the enzyme could be further labeled with concomitant decrease in ATPase activity that is consistent with the complete inactivation of one enzyme molecule by an affinity label at the third ATP-binding site. Partial hydrolysis of the FDNP-[14C]ATP-labeled enzyme and sequencing of the isolated peptide indicated that the affinity label was attached to Lys-beta 301 at all three active sites. Samples of F1 with covalent affinity label on Lys-beta 301 were also used to reconstitute F1-deficient submitochondrial particles. The reconstituted particles were assayed for ATPase and oxidative phosphorylation activities. These results show that the catalytic hydrolysis of ATP either by F1 in solution or by F0F1 complex attached to inner mitochondrial membrane takes place essentially at only one active site, but is promoted by the binding of ATP at the other two active sites, and that ATP synthesis during oxidative phosphorylation takes place at all three active sites [corrected].  相似文献   

19.
Two rat liver fatty acid synthetase preparations, containing 1.6 and 2.0 mol of 4'-phosphopantetheine/mol of synthetase, showed specific activity of 2006 and 2140 nmol of NADPH oxidized/min per mg of protein respectively. The two synthetase preparations could be loaded with either 3.3-4.4 mol of [1-14] acetate or 2.9-3.7 mol of [2-14C]malonate, by incubation with either [1-14C] acetyl-CoA or [2-14C]malonyl-CoA. The 4'-phosphopantetheine site could be more than 90% saturated and the serine site about 80% saturated with malonate derived from malonyl-CoA. However, with acetyl-CoA as substrate, binding at both the 4'-phosphopantetheine and cysteine thiol sites did not reach saturation. We interpret these results to indicate that, whereas the equilibrium constant for transfer of substrates between the serine loading site and the 4'-phosphopantetheine site is close to unity, that for transfer of acetyl moieties between the 4'-phosphopantetheine and cysteine sites favours formation of the 4'-phosphopantetheine thioester. Thus, despite the apparent sub-stoichiometric binding of acetate, the results are consistent with a functionally symmetrical model for the fatty acid synthetase which permits simultaneous substrate binding at two separate active centres.  相似文献   

20.
1. A Sepharose-(glutathione-2-pyridyl disulphide) conjugate has been prepared. 2. Its use in a new type of chromatography, covalent chromatography by thiol-disulphide interchange, is described. 3. With this technique, papain containing 1 intact catalytic site [thiol with high reactivity towards 2,2'-dipyridyl disulphide (2-Py-S-S-2-Py) at pH4] per mol of protein is readily prepared both from dried papaya latex and from commercial 2xcrystallized partially active papain. 4. The catalysis of the hydrolysis of alpha-N-benzoyl-l-arginine ethyl ester at pH6.0, 25.0 degrees C, I=0.3 by fully active papain thus prepared is characterized by K(m)=18.2+/-<0.1mm and k(cat.)=16.4+/-0.5s(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号