首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To develop safe vaccines for inducing mucosal immunity to major pulmonary bacterial infections, appropriate vaccine antigens (Ags), delivery systems and nontoxic molecular adjuvants must be considered. Such vaccine constructs can induce Ag‐specific immune responses that protect against mucosal infections. In particular, it has been shown that simply mixing the adjuvant with the bacterial Ag is a relatively easy means of constructing adjuvant‐based mucosal vaccine preparations; the resulting vaccines can elicit protective immunity. DNA‐based nasal adjuvants targeting mucosal DCs have been studied in order to induce Ag‐specific mucosal and systemic immune responses that provide essential protection against microbial pathogens that invade mucosal surfaces. In this review, initially a plasmid encoding the cDNA of Flt3 ligand (pFL), a molecule that is a growth factor for DCs, as an effective adjuvant for mucosal immunity to pneumococcal infections, is introduced. Next, the potential of adding unmethylated CpG oligodeoxynucleotide and pFL together with a pneumococcal Ag to induce protection from pneumococcal infections is discussed. Pneumococcal surface protein A has been used as vaccine for restoring mucosal immunity in older persons. Further, our nasal pFL adjuvant system with phosphorylcholine‐keyhole limpet hemocyanin (PC‐KLH) has also been used in pneumococcal vaccine development to induce complete protection from nasal carriage by Streptococcus pneumoniae . Finally, the possibility that anti‐PC antibodies induced by nasal delivery of pFL plus PC‐KLH may play a protective role in prevention of atherogenesis and thus block subsequent development of cardiovascular disease is discussed.
  相似文献   

2.
Efficient vaccine delivery to mucosal tissues including mucosa-associated lymphoid tissues is essential for the development of mucosal vaccine. We previously reported that claudin-4 was highly expressed on the epithelium of nasopharynx-associated lymphoid tissue (NALT) and thus claudin-4-targeting using C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) effectively delivered fused antigen to NALT and consequently induced antigen-specific immune responses. In this study, we applied the C-CPE-based vaccine delivery system to develop a nasal pneumococcal vaccine. We fused C-CPE with pneumococcal surface protein A (PspA), an important antigen for the induction of protective immunity against Streptococcus pneumoniae infection, (PspA-C-CPE). PspA-C-CPE binds to claudin-4 and thus efficiently attaches to NALT epithelium, including antigen-sampling M cells. Nasal immunization with PspA-C-CPE induced PspA-specific IgG in the serum and bronchoalveolar lavage fluid (BALF) as well as IgA in the nasal wash and BALF. These immune responses were sufficient to protect against pneumococcal infection. These results suggest that C-CPE is an efficient vaccine delivery system for the development of nasal vaccines against pneumococcal infection.  相似文献   

3.
Our previous study showed that a combination of a plasmid-expressing Flt3 ligand (pFL) and CpG oligodeoxynucleotides (CpG ODN) as a combined nasal adjuvant elicited mucosal immune responses in aged (2-y-old) mice. In this study, we investigated whether a combination of pFL and CpG ODN as a nasal adjuvant for a pneumococcal surface protein A (PspA) would enhance PspA-specific secretory-IgA Ab responses, which could provide protective mucosal immunity against Streptococcus pneumoniae infection in aged mice. Nasal immunization with PspA plus a combination of pFL and CpG ODN elicited elevated levels of PspA-specific secretory-IgA Ab responses in external secretions and plasma in both young adult and aged mice. Significant levels of PspA-specific CD4(+) T cell proliferative and PspA-induced Th1- and Th2- type cytokine responses were noted in nasopharyngeal-associated lymphoreticular tissue, cervical lymph nodes, and spleen of aged mice, which were equivalent to those in young adult mice. Additionally, increased numbers of mature-type CD8, CD11b-expressing dendritic cells were detected in mucosal inductive and effector lymphoid tissues of aged mice. Importantly, aged mice given PspA plus a combination of pFL and CpG ODN showed protective immunity against nasal S. pneumoniae colonization. These results demonstrate that nasal delivery of a combined DNA adjuvant offers an attractive possibility for protection against S. pneumoniae in the elderly.  相似文献   

4.
Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates the innate and adaptive immunity. TLR adaptor molecules play a central role in this cascade; thus, we hypothesized that overexpression of TLR adaptor molecules could mimic infection without any microbial components. Dual-promoter plasmids that carry an antigen and a TLR adaptor molecule such as the Toll-interleukin-1 receptor domain-containing adaptor-inducing beta interferon (TRIF) or myeloid differentiation factor 88 (MyD88) were constructed and administered to mice to determine if these molecules can act as an adjuvant. A DNA vaccine incorporated with the MyD88 genetic adjuvant enhanced antigen-specific humoral immune responses, whereas that with the TRIF genetic adjuvant enhanced cellular immune responses. Incorporating the TRIF genetic adjuvant in a DNA vaccine targeting the influenza HA antigen or the tumor-associated antigen E7 conferred superior protection. These results indicate that TLR adaptor molecules can bridge innate and adaptive immunity and potentiate the effects of DNA vaccines against virus infection and tumors.  相似文献   

5.
The 23-valent polysaccharide vaccine and the 7-valent pneumococcal conjugate vaccine are licensed vaccines that protect against pneumococcal infections worldwide. However, the incidence of pneumococcal diseases remains high in low-income countries. Whole-cell vaccines with high safety and strong immunogenicity may be a favorable choice. We previously obtained a capsule-deficient Streptococcus pneumoniae mutant named SPY1 derived from strain D39. As an attenuated live pneumococcal vaccine, intranasal immunization with SPY1 elicits broad serotype-independent protection against pneumococcal infection. In this study, for safety consideration, we inactivated SPY1 with 70% ethanol and intranasally immunized BALB/c mice with killed SPY1 plus cholera toxin adjuvant for four times. Results showed that intranasal immunization with inactivated SPY1 induced strong humoral and cellular immune responses. Intranasal immunization with inactivated SPY1 plus cholera toxin adjuvant elicited effective serotype-independent protection against the colonization of pneumococcal strains 19F and 4 as well as lethal infection of pneumococcal serotypes 2, 3, 14, and 6B. The protection rates provided by inactivated SPY1 against lethal pneumococcal infection were comparable to those of currently used polysaccharide vaccines. In addition, vaccine-specific B-cell and T-cell immune responses mediated the protection elicited by SPY1. In conclusion, the 70% ethanol-inactivated pneumococcal whole-cell vaccine SPY1 is a potentially safe and less complex vaccine strategy that offers broad protection against S. pneumoniae.  相似文献   

6.
Despite recent advances in developing and licensing adjuvants, there is a great need for more potent formulations to enhance immunogenicity of vaccines. An Eimeria tenella derived antigen (rEA) augments immune responses against several pathogens in animal models and recently was confirmed to be safe for human use. In this study, we have analyzed the molecular mechanisms underlying rEA activity in mice, and confirmed that rEA activates multiple immune cell types, including DCs, macrophages, NK, B, and T cells. The rEA adjuvant also elicits the induction of pleiotropic pro-inflammatory cytokines, responses that completely depend upon the presence of the TLR adaptor protein MyD88. Surprisingly, we also found that the TRIF adaptor protein acts as a potent negative regulator of TLR agonist-triggered immune responses. For example, IL12 production and the induction of co-stimulatory molecule expression by DCs and IFNγ production by NK cells in vivo were significantly increased in rEA-treated TRIF-KO mice. Importantly, however, TRIF suppressive effects were not restricted to rEA-mediated responses, but were apparent in LPS- or ODN2006-activated DCs as well. Taken together, our findings confirm that rEA is a potent adjuvant, triggering robust activation of the innate immune system, in a manner that is augmented by MyD88 and inhibited by TRIF; thereby unveiling the potential complexities of modulating TLR activity to augment vaccine efficacy.  相似文献   

7.
Vaccination is a conventional approach against foot‐and‐mouth disease (FMD) in pigs. However, failure to elicit an immune response to vaccine has been reported. Our previous investigation showed that ginseng stem and leaf saponins (GSLS) and mineral oil acted synergistically to promote Th1/Th2 immune responses to FMD vaccine in mice. This study was designed to i) find the optimal doses of GSLS in oil‐emulsified FMD vaccines to induce immune responses in mice and pigs and ii) to evaluate the effect of oil‐emulsified FMD vaccine supplemented with GSLS on the immune responses in pigs, by measuring the serum indirect hemagglutination (IHA) titer and IgG and IgG subclass levels. The GSLS‐enhanced immune response to FMD oil‐emulsion vaccine depended on the dose of GSLS added to the vaccine. Addition of GSLS at a dose of 40 μg to 2 ml of FMD oil‐emulsified vaccine significantly enhanced the humoral immune responses in pigs, when compared to the vaccine without GSLS (P<0.05). The increased antibodies included IgG1 and IgG2. Hence, GSLS and oil adjuvant synergistically promoted the immune responses to vaccination against FMD in pigs, and GSLS could be a promising vaccine additive to improve oil‐emulsified veterinary vaccines.  相似文献   

8.
Strategies for the development of new vaccines against Streptococcus pneumoniae infections try to overcome problems such as serotype coverage and high costs, present in currently available vaccines. Formulations based on protein candidates that can induce protection in animal models have been pointed as good alternatives. Among them, the Pneumococcal Surface Protein A (PspA) plays an important role during systemic infection at least in part through the inhibition of complement deposition on the pneumococcal surface, a mechanism of evasion from the immune system. Antigen delivery systems based on live recombinant lactic acid bacteria (LAB) represents a promising strategy for mucosal vaccination, since they are generally regarded as safe bacteria able to elicit both systemic and mucosal immune responses. In this work, the N-terminal region of clade 1 PspA was constitutively expressed in Lactobacillus casei and the recombinant bacteria was tested as a mucosal vaccine in mice. Nasal immunization with L. casei-PspA 1 induced anti-PspA antibodies that were able to bind to pneumococcal strains carrying both clade 1 and clade 2 PspAs and to induce complement deposition on the surface of the bacteria. In addition, an increase in survival of immunized mice after a systemic challenge with a virulent pneumococcal strain was observed.  相似文献   

9.
3′,5′-Cyclic diguanylic acid (cdiGMP) is emerging as a universal bacterial second messenger in regulating bacterial growth on surfaces. It has been recently shown that cdiGMP stimulates innate immunity and enhances antigen-specific humoral and cellular immune responses. We herein report that intranasal (i.n.) administration with cdiGMP induces an acute but transient inflammatory response and activation of dendritic cells in the lungs. Moreover, i.n. immunization of mice with pneumococcal surface adhesion A (PsaA) in conjunction with cdiGMP elicited strong antigen-specific serum immunoglobulin G (IgG) and secretory IgA antibody responses at multiple mucosal surfaces. More importantly, the immunized mice showed significantly reduced nasopharyngeal Streptococcus pneumoniae colonization. These results, for the first time, provide direct evidence for the induction of protection against mucosal bacterial infections by cdiGMP as an adjuvant.  相似文献   

10.
Streptococcus pneumoniae is a major respiratory pathogen that causes millions of deaths worldwide. Although subunit vaccines formulated with the capsular polysaccharides or their protein conjugates are currently-available, low-cost vaccines with wide serotype coverage still remain to be developed, especially for developing countries. Recently, gamma- irradiation has been considered as an effective inactivation method to prepare S. pneumoniae vaccine candidate. In this study, we investigated the immunogenicity and protective immunity of gamma-irradiated S. pneumoniae (r-SP), by comparing with heat-inactivated S. pneumoniae (h-SP) and formalin-inactivated S. pneumoniae (f-SP), both of which were made by traditional inactivation methods. Intranasal immunization of C57BL/6 mice with r-SP in combination with cholera toxin as an adjuvant enhanced S. pneumoniaespecific antibodies on the airway mucosal surface and in sera more potently than that with h-SP or f-SP under the same conditions. In addition, sera from mice immunized with r-SP potently induced opsonophagocytic killing activity more effectively than those of h-SP or f-SP, implying that r-SP could induce protective antibodies. Above all, immunization with r-SP effectively protected mice against S. pneumoniae infection. Collectively, these results suggest that gamma- irradiation is an effective method for the development of a killed whole cell pneumococcal vaccine that elicits robust mucosal and systemic immune responses.  相似文献   

11.
Extracellular adenosine production is crucial for host resistance against Streptococcus pneumoniae (pneumococcus) and is thought to affect antibacterial immune responses by neutrophils. However, whether extracellular adenosine alters direct host–pathogen interaction remains unexplored. An important determinant for lung infection by S. pneumoniae is its ability to adhere to the pulmonary epithelium. Here we explored whether extracellular adenosine can directly impact bacterial adherence to lung epithelial cells. We found that signaling via A1 adenosine receptor significantly reduced the ability of pneumococci to bind human pulmonary epithelial cells. A1 receptor signaling blocked bacterial binding by reducing the expression of platelet‐activating factor receptor, a host protein used by S. pneumoniae to adhere to host cells. In vivo, A1 was required for control of pneumococcal pneumonia as inhibiting it resulted in increased host susceptibility. As S. pneumoniae remain a leading cause of community‐acquired pneumonia in the elderly, we explored the role of A1 in the age‐driven susceptibility to infection. We found no difference in A1 pulmonary expression in young versus old mice. Strikingly, triggering A1 signaling boosted host resistance of old mice to S. pneumoniae pulmonary infection. This study demonstrates a novel mechanism by which extracellular adenosine modulates resistance to lung infection by targeting bacterial–host interactions.  相似文献   

12.
In traditional Asian medicine, Aralia cordata (AC) is a known as a pain reliever and anti‐inflammatory drug. Although several of its biological activities have been reported, the immunomodulatory effects of a hot water extract of AC (HAC) have not yet been described. The aim of this study was to investigate whether HAC modulates the activation of macrophages, which play important roles in innate immune responses against microbial pathogens, and if so, to determine the molecular mechanisms by which HAC mediates this process. It was found that HAC activates bone marrow‐derived macrophages (BMDM) and increases amounts of nitric oxide and proinflammatory cytokines in a dose‐dependent manner. In addition, HAC was found to induce phosphorylation of NF‐κB and mitogen‐activated protein kinases (MAPKs), including c‐Jun N‐terminal kinases, extracellular signal‐regulated kinases and p38. Interestingly, these effects were absent in BMDM prepared from myeloid differentiation protein 88‐knockout mice. Polysaccharides from HAC exerted stronger immunostimulatory effects than HAC itself. Furthermore, orally administered HAC clearly enhanced clearance of the intracellular pathogen Listeria monocytogenes by boosting innate immune responses. These results demonstrate that HAC exerts immunostimulatory effects through the TLR/MyD88 and NF‐κB/MAPK signal transduction pathways.  相似文献   

13.
Streptococcus pneumoniae is a leading cause of some diseases such as pneumonia, sepsis, and meningitis mostly in children less than 5?years of age. Presently, two types of pneumococcal vaccine are available on the market: polysaccharide vaccines (PPV) that are based on capsular polysaccharides of at least 92 different serotypes, and protein-conjugated polysaccharide vaccine (PCV). The PPVs such as PPV23 do not stimulate efficient protective immunity in children under 2?years old, while the PCVs such as PCV7, PCV10, and PCV13 that cover 7, 10, and 13 serotypes, respectively, highly protect newborns, but have some disadvantages such as complications in manufacturing, costly production, and also requires refrigeration and multiple injections. Epitope-based vaccines, including varied mixtures of conserved virulence proteins, are a promising alternative to the existing capsular antigen vaccines. In this study, it has been tried to design an efficient subunit vaccine in order to elicit both CTL and HTL responses. The immunodominant epitopes from highly protective antigens of S. pneumoniae (PspA, CbpA, PiuA, and PhtD) were selected from different databanks, such as IEDB, PROPRED, RANKPEP, and MHCPRED. The PspA and CbpA were chosen as CTL epitope stimulants, and PhtD and PiuA were defined as helper epitopes. Because of low immunogenicity of epitope vaccines, PorB protein as a TLR2 agonist was employed to increase the immunogenicity of the vaccine. All the peptide segments were fused to each other by proper linkers, and the physicochemical, structural, and immunological characteristics of the construct were also evaluated. To achieve a high-quality 3?D structure of the protein, modeling, refinement, and validation of the final construct were done. Docking and molecular dynamics analyses demonstrated an appropriate and stable interaction between the vaccine and TLR2 during the simulation period. The computational studies suggested the designed vaccine as a novel construct, capable to elicit efficient humoral and cellular immunities, which are crucial for protection against S. pneumoniae.

Communicated by Ramaswamy H. Sarma  相似文献   


14.
15.
Toll-like receptors (TLR) and the downstream adaptor protein MyD88 are considered crucial for protective immunity during bacterial infections. Streptococcus (S.) pneumoniae is a human respiratory pathogen and a large majority of clinical pneumococcal isolates expresses an external polysaccharide capsule. We here sought to determine the role of pneumococcal capsule in MyD88-mediated antibacterial defense during S. pneumonia pneumonia. Wild type (WT) and Myd88-/- mice were inoculated intranasally with serotype 2 S. pneumoniae D39 or with an isogenic capsule locus deletion mutant (D39∆cps), and analysed for bacterial outgrowth and inflammatory responses in the lung. As compared to WT mice, Myd88-/- mice infected with D39 demonstrated a modestly impaired bacterial clearance accompanied by decreased inflammatory responses in the lung. Strikingly, while WT mice rapidly cleared D39∆cps, Myd88-/- mice showed 105-fold higher bacterial burdens in their lungs and dissemination to blood 24 hours after infection. These data suggest that the pneumococcal capsule impairs recognition of TLR ligands expressed by S. pneumoniae and thereby partially impedes MyD88-mediated antibacterial defense.  相似文献   

16.
Toll‐like receptor 5 recognizes bacterial flagellin, plays a critical role in innate immunity, and contributes to flagellin‐specific humoral immunity. Further, TLR5‐expressing dendritic cells play an important role in IgA synthesis in the intestine; however, the contribution of TLR5 to antigen (Ag)‐specific mucosal immunity remains unclear. Thus, whether TLR5 is essential for the induction of intestinal secretory (S)IgA antibody (Ab) responses against flagellin and bacterial Ags attached to the bacterial surface in response to an oral flagellated bacterium, Salmonella, was explored in this study. Our results indicate that when TLR5 knockout (TLR5?/?) mice are orally immunized with recombinant Salmonella expressing fragment C of tetanus toxin (rSalmonella‐Tox C), tetanus toxoid (TT)‐ and flagellin (FliC)‐specific systemic IgG and intestinal SIgA Abs are elicited. The numbers of TT‐specific IgG Ab‐forming cells (AFCs) in the spleen and IgA AFCs in the lamina propria (LP) of TLR5?/? mice were comparable to those in wild‐type mice. rSalmonella‐Tox C was equally disseminated in TLR5?/? mice, TLR5?/? mice lacking Peyer's patches (PPs), and wild‐type mice. In contrast, TLR5?/? PP‐null mice failed to induce TT‐ and FliC‐specific SIgA Abs in the intestine and showed significantly reduced numbers of TT‐specific IgA AFCs in the LP. These results suggest that TLR5 is dispensable for the induction of flagellin and surface Ag‐specific systemic and mucosal immunity against oral flagellated bacteria. Rather, pathogen recognition, which occurs in PPs, is a prerequisite for the induction of mucosal immunity against flagellated bacteria.
  相似文献   

17.
18.
19.
The means by which Francisella tularensis, the causative agent of tularemia, are recognized by mammalian immune systems are poorly understood. Here we wished to explore the contribution of the MyD88/Toll-like receptor signaling pathway in initiating murine responses to F. tularensis Live Vaccine Strain (LVS). MyD88 knockout (KO) mice, but not TLR2-, TLR4- or TLR9-deficient mice, rapidly succumbed following in vivo bacterial infection via the intradermal route even with a very low dose of LVS (5 x 10(1)) that was 100,000-fold less than the LD(50) of normal wild-type (WT) mice. By day 5 after LVS infection, bacterial organ burdens were 5-6 logs higher in MyD88 knockout mice; further, unlike infected WT mice, levels of interferon-gamma in the sera of LVS-infected MyD88 KO were undetectable. An in vitro culture system was used to assess the ability of bone marrow macrophages derived from either KO or WT mice to support bacterial growth, or to control intracellular bacterial replication when co-cultured with immune lymphocytes. In this assay, bacterial replication was similar in macrophages derived from either WT or any of the TLR KO mice. Bacterial growth was controlled in co-cultures containing macrophages from MyD88 KO mice or TLR KO mice as well as in co-cultures containing immune WT splenic lymphocytes and WT macrophages. Further, MyD88-deficient LVS-immune splenocytes controlled intracellular growth comparably to those from normal mice. Thus MyD88 is essential for innate host resistance to LVS infection, but is not required for macrophage control of intracellular bacterial growth.  相似文献   

20.
TLRs directly induce innate host defense responses, but the mechanisms of TLR-mediated adaptive immunity remain subject to debate. In this study, we clarified a role of TLR-mediated innate immunity for induction of adaptive immunity by oral vaccination with a live recombinant attenuated Salmonella enteric serovar Typhimurium vaccine (RASV) strain expressing Streptococcus pneumoniae surface protein A (PspA) Ag. Of note, oral or intranasal vaccination with RASV expressing PspA resulted in identical or even significantly higher levels of PspA-specific IgG and IgA responses in the systemic and mucosal compartments of MyD88(-/-) mice of either BALB/c or C57BL/6 background when compared with those of wild-type mice. Although PspA-specific CD4(+) T cell proliferation in the MyD88(-/-) mice was minimal, depletion of CD4(+) T cells abolished PspA-specific IgG and IgA responses in the MyD88(-/-) mice of BALB/c background. Of the greatest interest, MyD88(-/-) mice that possessed high levels of PspA-specific IgG and IgA responses but minimal levels of CD4(+) T cell responses died earlier than nonvaccinated and vaccinated wild-type mice following i.v. or intranasal challenge with virulent S. pneumoniae. Taken together, these results suggest that innate immunity activated by MyD88 signals might not be necessary for Ag-specific Ab induction in both systemic and mucosal sites but is critical for protection following oral vaccination with attenuated Salmonella expressing PspA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号