首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
2.
Aging is a major risk factor for cardiovascular diseases. Our previous studies demonstrate that aging impairs the caveolar T-type CaV3.2-RyR axis for extracellular Ca2+ influx to trigger Ca2+ sparks in vascular smooth muscle cells (VSMCs). We hypothesize that the administration of senolytics, which can selectively clear senescent cells, could preserve the caveolar CaV3.2-RyR axis in aging VSMCs. In this study, 10-month-old mice were administered the senolytics cocktail consisting of dasatinib (5 mg/kg) and quercetin (50 mg/kg) or vehicle bi-weekly for 4 months. Using VSMCs from mouse mesenteric arteries, we found that Ca2+ sparks were diminished after caveolae disruption by methyl-β-cyclodextrin (10 mM) in cells from D + Q treated but not vehicle-treated 14-month-old mice. D + Q treatment promoted the expression of CaV3.2 in 14-month-old mesenteric arteries. Structural analysis using electron tomography and immunofluorescence staining revealed the remodeling of caveolae and co-localization of CaV3.2-Cav-1 in D + Q treatment aged mesenteric arteries. In keeping with theoretical observations, Cav3.2 channel inhibition by Ni2+ (50 μM) suppressed Ca2+ in VSMCs from the D + Q group, with no effect observed in vehicle-treated arteries. Our study provides evidence that age-related caveolar CaV3.2-RyR axis malfunction can be alleviated by pharmaceutical intervention targeting cellular senescence. Our findings support the potential of senolytics for ameliorating age-associated cardiovascular disease.  相似文献   

3.
The dynamics of amyloid fibrils, including their formation and dissociation, could be of vital importance in life. We studied the kinetics of dissociation of the amyloid fibrils from wild-type hen lysozyme at 25°C in vitro as a function of pressure using Trp fluorescence as a probe. Upon 100-fold dilution of 8 mg ml−1 fibril solution in 80 mM NaCl, pH 2.2, no immediate change occurred in Trp fluorescence, but at pressures of 50–450 MPa the fluorescence intensity decreased rapidly with time (kobs = 0.00193 min−1 at 0.1 MPa, 0.0348 min−1 at 400 MPa). This phenomenon is attributable to the pressure-accelerated dissociation of amyloid fibrils into monomeric hen lysozyme. From the pressure dependence of the rates, which reaches a plateau at ∼450 MPa, we determined the activation volume ΔV0‡ = −32.9 ± 1.7 ml mol(monomer)−1 and the activation compressibility Δκ = −0.0075 ± 0.0006 ml mol(monomer)−1 bar−1 for the dissociation reaction. The negative ΔV0‡ and Δκ values are consistent with the notion that the amyloid fibril from wild-type hen lysozyme is in a high-volume and high-compressibility state, and the transition state for dissociation is coupled with a partial hydration of the fibril.  相似文献   

4.
Aging is characterized by progressive decay of biological systems and although it is not considered a disease, it is one of the main risk factors for chronic diseases and many types of cancers. The accumulation of senescent cells in various tissues is thought to be a major factor contributing to aging and age-related diseases. Removal of senescent cells during aging by either genetic or therapeutic methods have led to an improvement of several age related disease in mice. In this preview, we highlight the significance of developing senotherapeutic approaches to specifically kill senescent cells (senolytics) or suppress the senescence-associated secretory phenotype (SASP) that drives sterile inflammation (senomorphics) associated with aging to extend healthspan and potentially lifespan. Also, we provide an overview of the senotherapeutic drugs identified to date. In particular, we discuss and expand upon the recent identification of inhibitors of the HSP90 co-chaperone as a new class of senolytics.  相似文献   

5.
Aging drives progressive loss of the ability of tissues to recover from stress, partly through loss of somatic stem cell function and increased senescent burden. We demonstrate that bone marrow‐derived mesenchymal stem cells (BM‐MSCs) rapidly senescence and become dysfunctional in culture. Injection of BM‐MSCs from young mice prolonged life span and health span, and conditioned media (CM) from young BM‐MSCs rescued the function of aged stem cells and senescent fibroblasts. Extracellular vesicles (EVs) from young BM‐MSC CM extended life span of Ercc1 −/− mice similarly to injection of young BM‐MSCs. Finally, treatment with EVs from MSCs generated from human ES cells reduced senescence in culture and in vivo, and improved health span. Thus, MSC EVs represent an effective and safe approach for conferring the therapeutic effects of adult stem cells, avoiding the risks of tumor development and donor cell rejection. These results demonstrate that MSC‐derived EVs are highly effective senotherapeutics, slowing the progression of aging, and diseases driven by cellular senescence.  相似文献   

6.
Constitutive NF‐κB activation is associated with cellular senescence and stem cell dysfunction and rare variants in NF‐κB family members are enriched in centenarians. We recently identified a novel small molecule (SR12343) that inhibits IKK/NF‐κB activation by disrupting the association between IKKβ and NEMO. Here we investigated the therapeutic effects of SR12343 on senescence and aging in three different mouse models. SR12343 reduced senescence‐associated beta‐galactosidase (SA‐β‐gal) activity in oxidative stress‐induced senescent mouse embryonic fibroblasts as well as in etoposide‐induced senescent human IMR90 cells. Chronic administration of SR12343 to the Ercc1 −/ and Zmpste24 −/− mouse models of accelerated aging reduced markers of cellular senescence and SASP and improved multiple parameters of aging. SR12343 also reduced markers of senescence and increased muscle fiber size in 2‐year‐old WT mice. Taken together, these results demonstrate that IKK/NF‐κB signaling pathway represents a promising target for reducing markers of cellular senescence, extending healthspan and treating age‐related diseases.  相似文献   

7.
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH) and Eyring transition state entropies (ΔS). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake.  相似文献   

8.
Organs age differently, causing wide heterogeneity in multimorbidity, but underlying mechanisms are largely elusive. To investigate the basis of organ‐specific ageing, we utilized progeroid repair‐deficient Ercc1Δ /− mouse mutants and systematically compared at the tissue, stem cell and organoid level two organs representing ageing extremes. Ercc1Δ /− intestine shows hardly any accelerated ageing. Nevertheless, we found apoptosis and reduced numbers of intestinal stem cells (ISCs), but cell loss appears compensated by over‐proliferation. ISCs retain their organoid‐forming capacity, but organoids perform poorly in culture, compared with WT. Conversely, liver ages dramatically, even causing early death in Ercc1‐KO mice. Apoptosis, p21, polyploidization and proliferation of various (stem) cells were prominently elevated in Ercc1Δ /− liver and stem cell populations were either largely unaffected (Sox9+), or expanding (Lgr5+), but were functionally exhausted in organoid formation and development in vitro. Paradoxically, while intestine displays less ageing, repair in WT ISCs appears inferior to liver as shown by enhanced sensitivity to various DNA‐damaging agents, and lower lesion removal. Our findings reveal organ‐specific anti‐ageing strategies. Intestine, with short lifespan limiting time for damage accumulation and repair, favours apoptosis of damaged cells relying on ISC plasticity. Liver with low renewal rates depends more on repair pathways specifically protecting the transcribed compartment of the genome to promote sustained functionality and cell preservation. As shown before, the hematopoietic system with intermediate self‐renewal mainly invokes replication‐linked mechanisms, apoptosis and senescence. Hence, organs employ different genome maintenance strategies, explaining heterogeneity in organ ageing and the segmental nature of DNA‐repair‐deficient progerias.  相似文献   

9.
Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT m = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a Ka = 16.2±0.6×107 M−1 where enthalpic change ΔH = −13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = −2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (Ka = 3.1±0.4×107 M−1) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.  相似文献   

10.

Background

Aberrant CD40 ligand (CD154) expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154TG) have an expanded spleen B cell pool and produce autoantibodies (autoAbs). CD22 deficient (CD22−/−) mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154TGCD22−/− mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation.

Methodology/Principal Findings

CD154TGCD22−/− mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154TGCD22−/− mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154TGCD22−/− mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7×106±6 in CD154TGCD22−/− mice; 1.7×106±0.4 in wild type mice, p<0.01), and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66×106±3 in CD154TGCD22−/− mice; 6.1×106±2 in wild type mice, p<0.01) that represented 39% of all spleen B cells.

Conclusions/Significance

These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans.  相似文献   

11.
12.
High-mobility group box 1 (HMGB-1) is a strong chemo-attractive signal for both inflammatory and stem cells. The aim of this study is to evaluate the mechanisms regulating HMGB-1–mediated adhesion and rolling of c-kit+ cells and assess whether toll-like receptor-2 (TLR-2) and toll-like receptor-4 (TLR-4) of endothelial cells or c-kit+ cells are implicated in the activation of downstream migration signals to peripheral c-kit+ cells. Effects of HMGB-1 on the c-kit+ cells/endothelial interaction were evaluated by a cremaster muscle model in wild-type (WT), TLR-2 (−/−) and Tlr4 (LPS-del) mice. The mRNA and protein expression levels of endothelial nitric oxide synthase were determined by quantitative real-time PCR and immunofluorescence staining. Induction of crucial adhesion molecules for rolling and adhesion of stem cells and leukocytes were monitored in vivo and in vitro. Following local HMGB-1 administration, a significant increase in cell rolling was detected (32.4 ± 7.1% in ‘WT’ versus 9.9 ± 3.2% in ‘control’, P < 0.05). The number of firmly adherent c-kit+ cells was more than 13-fold higher than that of the control group (14.6 ± 5.1 cells/mm2 in ‘WT’ versus 1.1 ± 1.0 cells/mm2 in ‘control’, P < 0.05). In knockout animals, the fraction of rolling cells did not differ significantly from control levels. Firm endothelial adhesion was significantly reduced in TLR-2 (−/−) and Tlr4 (LPS-del) mice compared to WT mice (1.5 ± 1.4 cells/mm2 in ‘TLR-2 (−/−)’ and 2.4 ± 1.4 cells/mm2 in ‘Tlr4 (LPS-del)’ versus 14.6 ± 5.1 cells/mm2 in ‘WT’, P < 0.05). TLR-2 (−/−) and Tlr4 (LPS-del) stem cells in WT mice did not show significant reduction in rolling and adhesion compared to WT cells. HMGB-1 mediates c-kit+ cell recruitment via endothelial TLR-2 and TLR-4.  相似文献   

13.
ERCC1 (excision repair cross complementing‐group 1) is a mammalian endonuclease that incises the damaged strand of DNA during nucleotide excision repair and interstrand cross‐link repair. Ercc1?/Δ mice, carrying one null and one hypomorphic Ercc1 allele, have been widely used to study aging due to accelerated aging phenotypes in numerous organs and their shortened lifespan. Ercc1?/Δ mice display combined features of human progeroid and cancer‐prone syndromes. Although several studies report cellular senescence and apoptosis associated with the premature aging of Ercc1?/Δ mice, the link between these two processes and their physiological relevance in the phenotypes of Ercc1?/Δ mice are incompletely understood. Here, we show that ERCC1 depletion, both in cultured human fibroblasts and the skin of Ercc1?/Δ mice, initially induces cellular senescence and, importantly, increased expression of several SASP (senescence‐associated secretory phenotype) factors. Cellular senescence induced by ERCC1 deficiency was dependent on activity of the p53 tumor‐suppressor protein. In turn, TNFα secreted by senescent cells induced apoptosis, not only in neighboring ERCC1‐deficient nonsenescent cells, but also cell autonomously in the senescent cells themselves. In addition, expression of the stem cell markers p63 and Lgr6 was significantly decreased in Ercc1?/Δ mouse skin, where the apoptotic cells are localized, compared to age‐matched wild‐type skin, possibly due to the apoptosis of stem cells. These data suggest that ERCC1‐depleted cells become susceptible to apoptosis via TNFα secreted from neighboring senescent cells. We speculate that parts of the premature aging phenotypes and shortened health‐ or lifespan may be due to stem cell depletion through apoptosis promoted by senescent cells.  相似文献   

14.
15.
16.
Phosphatidylserine (PS) exposure on the cell surface indicates apoptosis, but has also been related to evasion mechanisms of parasites, a concept known as apoptotic mimicry. Toxoplasma gondii mimics apoptotic cells by exposing PS, inducing secretion of TGF-beta1 by infected activated macrophages leading to degradation of inducible nitric oxide (NO) synthase, NO production inhibition and consequently persisting in these cells. Here PS+ and PS subpopulation of tachyzoites were separated and the entrance mechanism, growth and NO inhibition in murine macrophages, and mice survival and pathology were analyzed. Infection index in resident macrophages was similar for both PS subpopulations but lower when compared to the total T. gondii population. Growth in resident macrophages was higher for the total T. gondii population, intermediate for the PS+ and lower for the PS subpopulation. Production of NO by activated macrophages was inhibited after infection with the PS+ subpopulation and the total populations of tachyzoites. However, the PS subpopulation was not able to inhibit NO production. PS+ subpopulation invaded macrophages by active penetration as indicated by tight-fitting vacuoles, but the PS subpopulation entered macrophages by phagocytosis as suggested by loose-fitting vacuoles containing these tachyzoites. The entrance mechanism of both subpopulations was confirmed in a non-professional phagocytic cell line where only the PS+ tachyzoites were found inside these cells in tight-fitting vacuoles. Both subpopulations of T. gondii killed mice faster than the total population. Clear signs of inflammation and no tachyzoites were seen in the peritoneal cavity of mice infected with the PS subpopulation. Moreover, mice infected with the PS+ subpopulation had no sign of inflammation and the parasite burden was intense. These results show that PS+ and PS subpopulations of T. gondii are necessary for a successful toxoplasma infection indicating that both subpopulations are required to maintain the balance between inflammation and parasite growth.  相似文献   

17.
18.
19.
Reduced signalling through the insulin/insulin-like growth factor-1 signalling (IIS) pathway is a highly conserved lifespan determinant in model organisms. The precise mechanism underlying the effects of the IIS on lifespan and health is currently unclear, although cellular stress resistance may be important. We have previously demonstrated that mice globally lacking insulin receptor substrate 1 (Irs1−/−) are long-lived and enjoy a greater period of their life free from age-related pathology compared with wild-type (WT) controls. In this study, we show that primary dermal fibroblasts and primary myoblasts derived from Irs1−/− mice are no more resistant to a range of oxidant and nonoxidant chemical stressors than cells derived from WT mice.  相似文献   

20.
Apolipoprotein A-II (apoA-II) is the second major apolipoprotein following apolipoprotein A-I (apoA-I) in HDL. ApoA-II has multiple physiological functions and can form senile amyloid fibrils (AApoAII) in mice. Most circulating apoA-II is present in lipoprotein A-I/A-II. To study the influence of apoA-I on apoA-II and AApoAII amyloidosis, apoA-I-deficient (C57BL/6J.Apoa1−/−) mice were used. Apoa1−/− mice showed the expected significant reduction in total cholesterol (TC), HDL cholesterol (HDL-C), and triglyceride (TG) plasma levels. Unexpectedly, we found that apoA-I deficiency led to redistribution of apoA-II in HDL and an age-related increase in apoA-II levels, accompanied by larger HDL particle size and an age-related increase in TC, HDL-C, and TG. Aggravated AApoAII amyloidosis was induced in Apoa1−/− mice systemically, especially in the heart. These results indicate that apoA-I plays key roles in maintaining apoA-II distribution and HDL particle size. Furthermore, apoA-II redistribution may be the main reason for aggravated AApoAII amyloidosis in Apoa1−/− mice. These results may shed new light on the relationship between apoA-I and apoA-II as well as provide new information concerning amyloidosis mechanism and therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号