首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA methylation is a central regulator of genome function, and altered methylation patterns are indicative of biological aging and mortality. Age‐related cellular, biochemical, and molecular changes in the hippocampus lead to cognitive impairments and greater vulnerability to neurodegenerative disease that varies between the sexes. The role of hippocampal epigenomic changes with aging in these processes is unknown as no genome‐wide analyses of age‐related methylation changes have considered the factor of sex in a controlled animal model. High‐depth, genome‐wide bisulfite sequencing of young (3 month) and old (24 month) male and female mouse hippocampus revealed that while total genomic methylation amounts did not change with aging, specific sites in CG and non‐CG (CH) contexts demonstrated age‐related increases or decreases in methylation that were predominantly sexually divergent. Differential methylation with age for both CG and CH sites was enriched in intergenic and intronic regions and under‐represented in promoters, CG islands, and specific enhancer regions in both sexes, suggesting that certain genomic elements are especially labile with aging, even if the exact genomic loci altered are predominantly sex‐specific. Lifelong sex differences in autosomal methylation at CG and CH sites were also observed. The lack of genome‐wide hypomethylation, sexually divergent aging response, and autosomal sex differences at CG sites was confirmed in human data. These data reveal sex as a previously unappreciated central factor of hippocampal epigenomic changes with aging. In total, these data demonstrate an intricate regulation of DNA methylation with aging by sex, cytosine context, genomic location, and methylation level.  相似文献   

3.
胡宗福  赵静雯  杨景峰 《生命科学》2014,(10):1026-1031
DNA甲基化与衰老的研究是近年来生命科学领域研究的热点之一。综述了DNA甲基化理论研究进展和探讨影响甲基化与衰老的主要因素,以揭示两者之间可能存在的联系。  相似文献   

4.
5.
Within 2–3 months of in vitro culture-expansion, mesenchymal stromal cells (MSC) undergo replicative senescence characterized by cell enlargement, loss of differentiation potential and ultimate growth arrest. In this study, we have analyzed DNA methylation changes upon long-term culture of MSC by using the HumanMethylation27 BeadChip microarray assessing 27 578 unique CpG sites. Furthermore, we have compared MSC from young and elderly donors. Overall, methylation patterns were maintained throughout both long-term culture and aging but highly significant differences were observed at specific CpG sites. Many of these differences were observed in homeobox genes and genes involved in cell differentiation. Methylation changes were verified by pyrosequencing after bisulfite conversion and compared to gene expression data. Notably, methylation changes in MSC were overlapping in long-term culture and aging in vivo . This supports the notion that replicative senescence and aging represent developmental processes that are regulated by specific epigenetic modifications.  相似文献   

6.
DNA methylation alterations play mechanistic roles in aging; however, the epigenetic regulators/mediators causally involved in renal aging remain elusive. Here, we report that natural and D‐galactose (D‐gal)‐induced aging kidneys display marked suppression of antiaging factor NRF2 (nuclear factor erythroid‐derived 2‐like 2) and KLOTHO, accompanied by upregulations of DNA methyltransferase (DNMT) 1/3a/3b and NRF2/KLOTHO gene promoter hypermethylations. Administration of a DNMT inhibitor SGI‐1072 effectively hypomethylated the promoters, derepressed NRF2/KLOTHO, and mitigated the structural and functional alterations of renal aging in D‐gal mice. Moreover, oleuropein (OLP), an olive‐derived polyphenol, also displayed similar epigenetic modulation and antiaging effects. OLP inhibited the epigenetic NRF2/KLOTHO suppressions in a gain of DNMT‐sensitive manner in cultured renal cells, demonstrating a strong DNA‐demethylating capacity. In NRF2 knockout and KLOTHO knockdown D‐gal mice, OLP exhibited reduced antiaging effects with KLOTHO displaying a prominent gene effect and effect size; consistently in KLOTHO knockdown mice, the antiaging effects of SGI‐1027 were largely abrogated. Therefore, the KLOTHO recovery is critical for the antiaging effects of DNA demethylation. Collectively, our data indicate that aberrant DNMT1/3a/3b elevations and the resultant suppression of antiaging factors contribute significantly to epigenetic renal aging, which might be targeted for epigenetic intervention by synthetic or natural DNA‐demethylating agents.  相似文献   

7.
8.
9.
10.
11.
We describe a methodology for detecting differentially methylated regions (DMRs) and variably methylated regions (VMRs), in data from Infinium 450K arrays that are very widely used in epigenetic studies. Region detection is more specific than single CpG analysis as it increases the extent of common findings between studies, and is more powerful as it reduces the multiple testing problem inherent in epigenetic whole‐genome association studies (EWAS). In addition, results driven by single erroneous probes are removed. We have used multiple publicly available Infinium 450K data sets to generate a consensus list of DMRs for age, supporting the hypothesis that aging is associated with specific epigenetic modifications. The consensus aging DMRs are significantly enriched for muscle biogenesis pathways. We find a massive increase in VMRs with age and in regions of the genome associated with open chromatin and neurotransmission. Old age VMRs are significantly enriched for neurotransmission pathways. EWAS studies should investigate the role of this interindividual variation in DNA methylation, in the age‐associated diseases of sarcopenia and dementia.  相似文献   

12.
13.
14.
15.
16.
The integration of behavioral epigenetics' principles (eg, DNA methylation) into the study of human infants' development has mainly focused on the effects of early adverse exposures, paying less attention to protective caregiving experiences. The present review focused on DNA methylation linked to variations in maternal behavior in human infants and children. Literature search occurred on three databases (PubMed, Scopus and Web of Science) and 11 records were selected. Key variables were abstracted from each article including: sample size and characteristics, time and type of maternal caregiving behavior exposure, time and locus of methylation biomarker, presence/absence, time and type of adverse exposure. Six out of eleven records documented the predictive effect of maternal caregiving on DNA methylation, whereas the remaining five reported on the role of maternal behavior as an influencing factor of the adversity‐to‐methylation link. Consistent with evidence from the animal model, the quality of maternal caregiving in humans (a) might be associated with variations in DNA methylation status of specific genes involved in socio‐emotional development and (b) might partially buffer the association between early adversities and epigenetic variations in infants and children. Current evidence suggests that the quality of maternal caregiving can contribute to behavioral development trajectories of human infants and children at least partially through epigenetic regulation. Open questions and methodological aspects are discussed to guide future human developmental research in behavioral epigenetics.  相似文献   

17.
Epigenetic variation is increasingly hypothesized as a mechanism underlying the effect of the in utero environment on long-term postnatal health; however, there is currently little clear data to support this in humans. A number of biological and technical factors provide challenges for the design of clinical epigenetic studies: from the type of cells or tissues that are available to the large range of predicted confounders that may impact findings. The human placenta, in addition to other neonatal tissues and whole blood, is commonly sampled for the study of epigenetic modifications. However there is little conformity for the most appropriate methods for study design, data analysis, and importantly, data interpretation. Here we present general recommendations for the reporting of DNA methylation in biological samples, with specific focus on the placenta. We outline key guidelines for: (1) placental sampling, (2) data analysis and presentation, and (3) interpretation of DNA methylation data. We emphasize the need to consider methodological noise, increase statistical power and to ensure appropriate adjustment for biological covariates. Finally, we highlight that epigenetic changes may be non-pathological and not necessarily translate into disease-associated changes. Improved reporting of DNA methylation data will be critical to identify epigenetic-based effects and to better understand the full phenotypic impact of these widely-reported epigenomic changes.  相似文献   

18.
Down Syndrome (DS) entails an increased risk of many chronic diseases that are typically associated with older age. The clinical manifestations of accelerated aging suggest that trisomy 21 increases the biological age of tissues, but molecular evidence for this hypothesis has been sparse. Here, we utilize a quantitative molecular marker of aging (known as the epigenetic clock) to demonstrate that trisomy 21 significantly increases the age of blood and brain tissue (on average by 6.6 years, = 7.0 × 10−14).  相似文献   

19.
20.
A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome‐wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号