首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth hormone (GH) and insulin-like growth factor (IGF) signaling regulates lifespan in mice. The modulating effects of genetic background gained much attention because it was shown that life-prolonging effects in Snell dwarf and GH receptor knockout vary between mouse strains. We previously reported that heterozygous IGF-1R inactivation (IGF-1R+/−) extends lifespan in female mice on 129/SvPas background, but it remained unclear whether this mutation produces a similar effect in other genetic backgrounds and which molecules possibly modify this effect. Here, we measured the life-prolonging effect of IGF-1R+/− mutation in C57BL/6J background and investigated the role of insulin/IGF signaling molecules in strain-dependent differences. We found significant lifespan extension in female IGF-1R+/− mutants on C57BL/6J background, but the effect was smaller than in 129/SvPas, suggesting strain-specific penetrance of longevity phenotypes. Comparing GH/IGF pathways between wild-type 129/SvPas and C57BL/6J mice, we found that circulating IGF-I and activation of IGF-1R, IRS-1, and IRS-2 were markedly elevated in 129/SvPas, while activation of IGF pathways was constitutively low in spontaneously long-lived C57BL/6J mice. Importantly, we demonstrated that loss of one IGF-1R allele diminished the level of activated IGF-1R and IRS more profoundly and triggered stronger endocrine feedback in 129/SvPas background than in C57BL/6J. We also revealed that acute oxidative stress entails robust IGF-1R pathway activation, which could account for the fact that IGF-1R+/− stress resistance phenotypes are fully penetrant in both backgrounds. Together, these results provide a possible explanation why IGF-1R+/− was less efficient in extending lifespan in C57BL/6J compared with 129/SvPas.  相似文献   

2.
Time-dependent alterations in several biological processes of an organism may be characterized as aging. One of the effects of aging is the decline in cognitive functions. Dietary restriction (DR), an intervention where the consumption of food is lessened but without malnutrition, is a well-established mechanism that has a wide range of important outcomes including improved health span, delayed aging, and extension of lifespan of various species. It also plays a beneficial role in protecting against age-dependent deterioration of cognitive functions, and has neuroprotective properties against neurodegenerative diseases. Insulin-like growth factor (IGF)-1 plays an important role in the regulation of cellular and tissue functions, and relating to the aging process the most important pathway of IGF-1 is the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt/PKB) signaling cascade. Although many have studied the changes in the level of IGF-1 and its effect on neural proliferation, the downstream signaling proteins have not been fully elucidated. Hence in the present investigation, the IGF-1 gene expression and the normal endogenous levels of IGF1R (IGF-1 receptor), PI3K, Akt, pAkt, and pFoxO in the hippocampus of young, adult, and old mice were determined using real-time PCR and Western blot analyses. The effects of DR on these protein levels were also studied. Results showed a decrease in the levels of IGF-1, IGF1R, PI3K, and pAkt, while pFoxO level increased with respect to age. Under DR, these protein levels are maintained in adult mice, but old mice displayed diminished expression levels of these proteins as compared to ad libitum-fed mice. Maintenance of PI3K/Akt pathway results in the phosphorylation of FoxOs, necessary for the enhancement of neural proliferation and survival in adult mice. The down-regulation of IGF-I signaling, as observed in old mice, leads to increasing the activity of FoxO factors that may be important for the neuroprotective effects seen with DR.  相似文献   

3.
Prolactin-stimulated adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) mediates several reproductive behaviors including mating/pregnancy, dominant male pheromone preference in females, and paternal recognition of offspring. However, downstream signaling mechanisms underlying prolactin-induced adult neurogenesis are completely unknown. We report here for the first time that prolactin activates extracellular signal-regulated kinase 5 (ERK5), a MAP kinase that is specifically expressed in the neurogenic regions of the adult mouse brain. Knockdown of ERK5 by retroviral infection of shRNA attenuates prolactin-stimulated neurogenesis in SVZ-derived adult neural stem/progenitor cells (aNPCs). Inducible erk5 deletion in adult neural stem cells of transgenic mice inhibits neurogenesis in the SVZ and OB following prolactin infusion or mating/pregnancy. These results identify ERK5 as a novel and critical signaling mechanism underlying prolactin-induced adult neurogenesis.  相似文献   

4.
Mutations that decrease insulin-like growth factor (IGF) and growth hormone signaling limit body size and prolong lifespan in mice. In vertebrates, these somatotropic hormones are controlled by the neuroendocrine brain. Hormone-like regulations discovered in nematodes and flies suggest that IGF signals in the nervous system can determine lifespan, but it is unknown whether this applies to higher organisms. Using conditional mutagenesis in the mouse, we show that brain IGF receptors (IGF-1R) efficiently regulate somatotropic development. Partial inactivation of IGF-1R in the embryonic brain selectively inhibited GH and IGF-I pathways after birth. This caused growth retardation, smaller adult size, and metabolic alterations, and led to delayed mortality and longer mean lifespan. Thus, early changes in neuroendocrine development can durably modify the life trajectory in mammals. The underlying mechanism appears to be an adaptive plasticity of somatotropic functions allowing individuals to decelerate growth and preserve resources, and thereby improve fitness in challenging environments. Our results also suggest that tonic somatotropic signaling entails the risk of shortened lifespan.  相似文献   

5.
Bernal GM  Peterson DA 《Aging cell》2011,10(3):466-482
Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in the expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked whether a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in the gene expression of GFAP, VEGF, and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits NSC and progenitor cell maintenance and contributes to decreased neurogenesis.  相似文献   

6.
Recent studies have led to the exciting idea that adult-born neurons in the olfactory bulb (OB) may be critical for complex forms of olfactory behavior in mice. However, signaling mechanisms regulating adult OB neurogenesis are not well defined. We recently reported that extracellular signal-regulated kinase (ERK) 5, a MAP kinase, is specifically expressed in neurogenic regions within the adult brain. This pattern of expression suggests a role for ERK5 in the regulation of adult OB neurogenesis. Indeed, we previously reported that conditional deletion of erk5 in adult neurogenic regions impairs several forms of olfactory behavior in mice. Thus, it is important to understand how ERK5 regulates adult neurogenesis in the OB. Here we present evidence that shRNA suppression of ERK5 in adult neural stem/progenitor cells isolated from the subventricular zone (SVZ) reduces neurogenesis in culture. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, stimulates neurogenesis. Furthermore, inducible and conditional deletion of erk5 specifically in the neurogenic regions of the adult mouse brain interferes with cell cycle exit of neuroblasts, impairs chain migration along the rostral migratory stream and radial migration into the OB. It also inhibits neuronal differentiation and survival. These data suggest that ERK5 regulates multiple aspects of adult OB neurogenesis and provide new insights concerning signaling mechanisms governing adult neurogenesis in the SVZ-OB axis.  相似文献   

7.
Advanced age is a major risk factor for atherosclerosis, but how aging per se influences pathogenesis is not clear. Insulin-like growth factor-1 receptor (IGF-1R) promotes aortic vascular smooth muscle cell (VSMC) growth, migration, and extracellular matrix formation, but how IGF-1R signaling changes with age in VSMC is not known. We previously found age-related differences in the activation of Akt/FOXO3a and ERK1/2 pathways in VSMC, but the upstream signaling remains unclear. Using explanted VSMC from Fischer 344/Brown Norway F1 hybrid rats shown to display age-related vascular pathology similar to humans, we compared IGF-1R expression in early passages of VSMC and found a constitutive activation of IGF-1R in VSMC from old compared to young rats, including IGF-1R expression and its tyrosine kinase activity. The link between IGF-1R activation and the Akt/FOXO3a and ERK pathways was confirmed through the induction of IGF-1R with IGF-1 in young cells and attenuation of IGF-1R with an inhibitor in old cells. The effects of three kinase inhibitors: AG1024, LY294002, and TCN, were compared in VSMC from old rats to differentiate IGF-1R from other upstream signaling that could also regulate the Akt/FOXO and ERK pathways. Genes for p27kip-1, catalase and MnSOD, which play important roles in the control of cell cycle arrest and stress resistance, were found to be FOXO3a-targets based on FOXO3a-siRNA treatment. Furthermore, IGF-1R signaling modulated these genes through activation of the Akt/FOXO3a pathway. Therefore, activation of IGF-1R signaling influences VSMC function in old rats and may contribute to the increased risk for atherosclerosis.  相似文献   

8.
The Role of Notch Signaling in Adult Neurogenesis   总被引:1,自引:0,他引:1  
Neurogenesis occurs throughout adulthood in the mammalian brain. Newly born neurons are incorporated into the functional networks of both the olfactory bulb and the hippocampal dentate gyrus, and there is growing evidence that adult neurogenesis is important for various brain functions. Continuous neurogenesis is achieved by the coordinated proliferation and differentiation of adult neural stem cells. In this review, we discuss the recent findings concerning the roles of Notch signaling in adult neural stem cells.  相似文献   

9.
Growth of the fetal heart involves cardiomyocyte enlargement, division, and maturation. Insulin-like growth factor-1 (IGF-1) is implicated in many aspects of growth and is likely to be important in developmental heart growth. IGF-1 stimulates the IGF-1 receptor (IGF1R) and downstream signaling pathways, including extracellular signal-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K). We hypothesized that IGF-1 stimulates cardiomyocyte proliferation and enlargement through stimulation of the ERK cascade and stimulates cardiomyocyte differentiation through the PI3K cascade. In vivo administration of Long R3 IGF-1 (LR3 IGF-1) did not stimulate cardiomyocyte hypertrophy but led to a decreased percentage of cells that were binucleated in vivo. In culture, LR3 IGF-1 increased myocyte bromodeoxyuridine (BrdU) uptake by three- to five-fold. The blockade of either ERK or PI3K signaling (by UO-126 or LY-294002, respectively) completely abolished BrdU uptake stimulated by LR3 IGF-1. LR3 IGF-1 did not increase footprint area, but as expected, phenylephrine stimulated an increase in binucleated cardiomyocyte size. We conclude that 1) IGF-1 through IGF1R stimulates cardiomyocyte division in vivo; hyperplastic growth is the most likely explanation of IGF-1 stimulated heart growth in vivo; 2) IGF-1 through IGF1R does not stimulate binucleation in vitro or in vivo; 3) IGF-1 through IGF1R does not stimulate hypertrophy either in vivo or in vitro; and 4) IGF-1 through IGF1R requires both ERK and PI3K signaling for proliferation of near-term fetal sheep cardiomyocytes in vitro.  相似文献   

10.
In the brain, as in other tissues, estradiol interacts with growth factors. One of the growth factors that is involved in the neural actions of estradiol is insulin-like growth factor-I (IGF-I). Estradiol and IGF-I cooperate in the central nervous system to regulate neuronal development, neural plasticity, neuroendocrine events and the response of neural tissue to injury. The precise molecular mechanisms involved in these interactions are still not well understood. In the central nervous system there is abundant co-expression of estrogen receptors (ERs) and IGF-I receptors (IGF-IRs) in the same cells. Furthermore, the expression of estrogen receptors and IGF-I receptors in the brain is cross-regulated. In addition, using specific antibodies for the phosphorylated forms of extracellular-signal regulated kinase (ERK) 1 and ERK2 and Akt/protein kinase B (Akt/PKB) it has been shown that estradiol affects IGF-I signaling pathways in the brain. Estradiol treatment results in a dose-dependent increase in the phosphorylation of ERK and Akt/PKB in the brain of adult ovariectomized rats. In addition, estradiol and IGF-I have a synergistic effects on the activation of Akt/PKB in the adult rat brain. These findings suggest that estrogen effects in the brain may be mediated in part by the activation of the signaling pathways of the IGF-I receptor.  相似文献   

11.
Neurons arise in the adult forebrain subventricular zone (SVZ) from Type B neural stem cells (NSCs), raising considerable interest in the molecules that maintain this life-long neurogenic niche. Type B cells are anchored by specialized apical endfeet in the center of a pinwheel of ependymal cells. Here we show that the apical endfeet express high levels of the adhesion and signaling molecule vascular cell adhesion molecule-1 (VCAM1). Disruption of VCAM1 in vivo causes loss of the pinwheels, disrupted SVZ cytoarchitecture, proliferation and depletion of the normally quiescent apical Type B cells, and increased neurogenesis in the olfactory bulb, demonstrating a key role in niche structure and function. We show that VCAM1 signals via NOX2 production of reactive oxygen species (ROS) to maintain NSCs. VCAM1 on Type B cells is increased by IL-1β, demonstrating that it can act as an environmental sensor, responding to chemokines involved in tissue repair.  相似文献   

12.
13.
In the adult mammalian brain, neural stem cells in the subventricular zone continuously generate new neurons for the olfactory bulb. Cell fate commitment in these adult neural stem cells is regulated by cell fate-determining proteins. Here, we show that the cell fate-determinant TRIM32 is upregulated during differentiation of adult neural stem cells into olfactory bulb neurons. We further demonstrate that TRIM32 is necessary for the correct induction of neuronal differentiation in these cells. In the absence of TRIM32, neuroblasts differentiate slower and show gene expression profiles that are characteristic of immature cells. Interestingly, TRIM32 deficiency induces more neural progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated olfactory bulb neurons of TRIM32 knockout mice. These results highlight the function of the cell fate-determinant TRIM32 for a balanced activity of the adult neurogenesis process.  相似文献   

14.
The RNA‐binding protein Musashi1 (Msi1) is one of two mammalian homologues of DrosophilaMusashi, which is required for the asymmetric cell division of sensory organ precursor cells. In the mouse central nervous system (CNS), Msi1 is preferentially expressed in mitotically active progenitor cells in the ventricular zone (VZ) of the neural tube during embryonic development and in the subventricular zone (SVZ) of the postnatal brain. Previous studies showed that cells in the SVZ can contribute to long‐term neurogenesis in the olfactory bulb (OB), but it remains unclear whether Msi1‐expressing cells have self‐renewing potential and can contribute to neurogenesis in the adult. Here, we describe the generation of Msi1‐CreERT2 knock‐in mice and show by cell lineage tracing that Msi1‐CreERT2‐expressing cells mark neural stem cells (NSCs) in both the embryonic and adult brain. Msi1‐CreERT2 mice thus represent a new tool in our arsenal for genetically manipulating NSCs, which will be essential for understanding the molecular mechanisms underlying neural development. genesis, 51:128–134, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The brains of the adult mouse and human possess neural stem cells (NSCs) that retain the capacity to generate new neurons through the process of neurogenesis. They share the same anatomical locations of stem cell niches in the brain, as well as the prominent feature of rostral migratory stream formed by neuroblasts migrating from the lateral ventricles towards the olfactory bulb. Therefore the mouse possesses some fundamental features that may qualify it as a relevant model for adult human neurogenesis. Adult born young hippocampal neurons in the mouse display the unique property of enhanced plasticity, and can integrate physically and functionally into existing neural circuits in the brain. Such crucial properties of neurogenesis may at least partially underlie the improved learning and memory functions observed in the mouse when hippocampal neurogenesis is augmented, leading to the suggestion that neurogenesis induction may be a novel therapeutic approach for diseases with cognitive impairments such as Alzheimer's disease (AD). Research towards this goal has benefited significantly from the use of AD mouse models to facilitate the understanding in the impact of AD pathology on neurogenesis. The present article reviews the growing body of controversial data on altered neurogenesis in mouse models of AD and attempts to assess their relative relevance to humans.  相似文献   

16.
Adult hippocampal neurogenesis plays a pivotal role in learning and memory. The suppression of hippocampal neurogenesis induced by an increase of oxidative stress is closely related to cognitive impairment. Neural stem cells which persist in the adult vertebrate brain keep up the production of neurons over the lifespan. The balance between pro-oxidants and anti-oxidants is important for function and surviving of neural stem cells. Ginsenoside Rg1 is one of the most active components of Panax ginseng, and many studies suggest that ginsenosides have antioxidant properties. This research explored the effects and underlying mechanisms of ginsenoside Rg1 on protecting neural stem cells (NSCs) from oxidative stress. The sub-acute ageing of C57BL/6 mice was induced by subcutaneous injection of d-gal (120 mg kg?1 day?1) for 42 day. On the 14th day of d-gal injection, the mice were treated with ginsenoside Rg1 (20 mg kg?1 day?1, intraperitoneally) or normal saline for 28 days. The study monitored the effects of Rg1 on proliferation, senescence-associated and oxidative stress biomarkers, and Akt/mTOR signalling pathway in NSCs. Compared with the d-gal group, Rg1 improved cognitive impairment induced by d-galactose in mice by attenuating senescence of neural stem cells. Rg1 also decreased the level of oxidative stress, with increased the activity of superoxide dismutase and glutathione peroxidase in vivo and in vitro. Rg1 furthermore reduced the phosphorylation levels of protein kinase B (Akt) and the mechanistic target of rapamycin (mTOR) and down-regulated the levels of downstream p53, p16, p21 and Rb in d-gal treated NSCs. The results suggested that the protective effect of ginsenoside Rg1 on attenuating cognitive impairment in mice and senescence of NSCs induced by d-gal might be related to the reduction of oxidative stress and the down-regulation of Akt/mTOR signaling pathway.  相似文献   

17.
Kononenko NL  Haucke V 《Cell》2011,145(2):175-177
Formation of sensory maps within the olfactory bulb depends on insulin-like growth factor (IGF) signaling. Cao et al. (2011) now show that neuronal IGF secretion is regulated by neural activity through the calcium sensor synaptotagmin-10 and is required in the olfactory bulb for the sensation of smell.  相似文献   

18.
19.
In addition to their ability to stimulate cell proliferation, polypeptide growth factors are able to maintain cell survival under conditions that otherwise lead to apoptotic death. Growth factors control cell viability through regulation of critical intracellular signal transduction pathways. We previously characterized C2 muscle cell lines that lacked endogenous expression of insulin-like growth factor II (IGF-II). These cells did not differentiate but underwent apoptotic death in low-serum differentiation medium. Death could be prevented by IGF analogues that activated the IGF-I receptor or by unrelated growth factors such as platelet-derived growth factor BB (PDGF-BB). Here we analyze the signaling pathways involved in growth factor-mediated myoblast survival. PDGF treatment caused sustained activation of extracellular-regulated kinases 1 and 2 (ERK1 and -2), while IGF-I only transiently induced these enzymes. Transient transfection of a constitutively active Mek1, a specific upstream activator of ERKs, maintained myoblast viability in the absence of growth factors, while inhibition of Mek1 by the drug UO126 blocked PDGF-mediated but not IGF-stimulated survival. Although both growth factors activated phosphatidylinositol 3-kinase (PI3-kinase) to similar extents, only IGF-I treatment led to sustained stimulation of its downstream kinase, Akt. Transient transfection of a constitutively active PI3-kinase or an inducible Akt promoted myoblast viability in the absence of growth factors, while inhibition of PI3-kinase activity by the drug LY294002 selectively blocked IGF- but not PDGF-mediated muscle cell survival. In aggregate, these observations demonstrate that distinct growth factor-regulated signaling pathways independently control myoblast survival. Since IGF action also stimulates muscle differentiation, these results suggest a means to regulate myogenesis through selective manipulation of different signal transduction pathways.  相似文献   

20.
Spinal cord injury (SCI) is a devastating event that causes substantial morbidity and mortality, for which no fully restorative treatments are available. Stem cells transplantation offers some promise in the restoration of neurological function but with limitations. Insulin-like growth factor 1 (IGF-1) is a well-appreciated neuroprotective factor that is involved with various aspects of neural cells. Herein, the IGF-1 gene was introduced into spinal cord-derived neural stem cells (NSCs) and expressed steadily. The IGF-1-transfected NSCs exhibited higher viability and were promoted to differentiate into oligodendrocytes. Moreover, the most possible underlying mechanism, through which IGF-1 exerted its neuroprotective effects, was investigated. The result revealed that the differentiation was mediated by the IGF-1 activated extracellular signal-regulated kinases 1 and 2 (ERK1/2) and its downstream pathway. These findings provide the evidence for revealing the therapeutic merits of IGF-1-modified NSCs for SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号