首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aging in many animals is characterized by a failure to maintain tissue homeostasis and the loss of regenerative capacity. In this study, the ability to maintain tissue homeostasis and regenerative potential was investigated in sea urchins, a novel model to study longevity and negligible senescence. Sea urchins grow indeterminately, regenerate damaged appendages and reproduce throughout their lifespan and yet different species are reported to have very different life expectancies (ranging from 4 to more than 100 years). Quantitative analyses of cell proliferation and apoptosis indicated a low level of cell turnover in tissues of young and old sea urchins of species with different lifespans (Lytechinus variegatus, Strongylocentrotus purpuratus and Mesocentrotus franciscanus). The ability to regenerate damaged tissue was maintained with age as assessed by the regrowth of amputated spines and tube feet (motor and sensory appendages). Expression of genes involved in cell proliferation (pcna), telomere maintenance (tert) and multipotency (seawi and vasa) was maintained with age in somatic tissues. Immunolocalization of the Vasa protein to areas of the tube feet, spines, radial nerve, esophagus and a sub‐population of circulating coelomocytes suggests the presence of multipotent cells that may play a role in normal tissue homeostasis and the regenerative potential of external appendages. The results indicate that regenerative potential was maintained with age regardless of lifespan, contrary to the expectation that shorter lived species would invest less in maintenance and repair.  相似文献   

2.
Reduced quantity and quality of stem cells in aged individuals hinders cardiac repair and regeneration after injury. We used young bone marrow (BM) stem cell antigen 1 (Sca‐1) cells to reconstitute aged BM and rejuvenate the aged heart, and examined the underlying molecular mechanisms. BM Sca‐1+ or Sca‐1? cells from young (2–3 months) or aged (18–19 months) GFP transgenic mice were transplanted into lethally irradiated aged mice to generate 4 groups of chimeras: young Sca‐1+, young Sca‐1?, old Sca‐1+, and old Sca‐1?. Four months later, expression of rejuvenation‐related genes (Bmi1, Cbx8, PNUTS, Sirt1, Sirt2, Sirt6) and proteins (CDK2, CDK4) was increased along with telomerase activity and telomerase‐related protein (DNA‐PKcs, TRF‐2) expression, whereas expression of senescence‐related genes (p16INK4a, P19ARF, p27Kip1) and proteins (p16INK4a, p27Kip1) was decreased in Sca‐1+ chimeric hearts, especially in the young group. Host cardiac endothelial cells (GFP?CD31+) but not cardiomyocytes were the primary cell type rejuvenated by young Sca‐1+ cells as shown by improved proliferation, migration, and tubular formation abilities. C‐X‐C chemokine CXCL12 was the factor most highly expressed in homed donor BM (GFP+) cells isolated from young Sca‐1+ chimeric hearts. Protein expression of Cxcr4, phospho‐Akt, and phospho‐FoxO3a in endothelial cells derived from the aged chimeric heart was increased, especially in the young Sca‐1+ group. Reconstitution of aged BM with young Sca‐1+ cells resulted in effective homing of functional stem cells in the aged heart. These young, regenerative stem cells promoted aged heart rejuvenation through activation of the Cxcl12/Cxcr4 pathway of cardiac endothelial cells.  相似文献   

3.
Muscle stem (satellite) cells are relatively resistant to cell‐autonomous aging. Instead, their endogenous signaling profile and regenerative capacity is strongly influenced by the aged P‐Smad3, differentiated niche, and by the aged circulation. With respect to muscle fibers, we previously established that a shift from active Notch to excessive transforming growth factor‐beta (TGF‐β) induces CDK inhibitors in satellite cells, thereby interfering with productive myogenic responses. In contrast, the systemic inhibitor of muscle repair, elevated in old sera, was suggested to be Wnt. Here, we examined the age‐dependent myogenic activity of sera TGF‐β1, and its potential cross‐talk with systemic Wnt. We found that sera TGF‐β1 becomes elevated within aged humans and mice, while systemic Wnt remained undetectable in these species. Wnt also failed to inhibit satellite cell myogenicity, while TGF‐β1 suppressed regenerative potential in a biphasic fashion. Intriguingly, young levels of TGF‐β1 were inhibitory and young sera suppressed myogenesis if TGF‐β1 was activated. Our data suggest that platelet‐derived sera TGF‐β1 levels, or endocrine TGF‐β1 levels, do not explain the age‐dependent inhibition of muscle regeneration by this cytokine. In vivo, TGF‐β neutralizing antibody, or a soluble decoy, failed to reduce systemic TGF‐β1 and rescue myogenesis in old mice. However, muscle regeneration was improved by the systemic delivery of a TGF‐β receptor kinase inhibitor, which attenuated TGF‐β signaling in skeletal muscle. Summarily, these findings argue against the endocrine path of a TGF‐β1‐dependent block on muscle regeneration, identify physiological modalities of age‐imposed changes in TGF‐β1, and introduce new therapeutic strategies for the broad restoration of aged organ repair.  相似文献   

4.
The structural, compositional and mechanical properties of the spines of the dorsal fin in mature anosteocytic blue tilapia Oreochromis aureus and osteocytic common carp Cyprinus carpio are described, as well as their temporal growth pattern and regenerative capacities. The three‐dimensional architecture of both spines, from macro to sub‐micron levels, is shown to be axially oriented and therefore highly anisotropic and the spines of both species are able to regenerate after partial amputation.  相似文献   

5.

Background

The zebrafish has the capacity to regenerate many tissues and organs. The caudal fin is one of the most convenient tissues to approach experimentally due to its accessibility, simple structure and fast regeneration. In this work we investigate how the regenerative capacity is affected by recurrent fin amputations and by experimental manipulations that block regeneration.

Methodology/Principal Findings

We show that consecutive repeated amputations of zebrafish caudal fin do not reduce its regeneration capacity and do not compromise any of the successive regeneration steps: wound healing, blastema formation and regenerative outgrowth. Interfering with Wnt/ß-catenin signalling using heat-shock-mediated overexpression of Dickkopf1 completely blocks fin regeneration. Notably, if these fins were re-amputated at the non-inhibitory temperature, the regenerated caudal fin reached the original length, even after several rounds of consecutive Wnt/ß-catenin signalling inhibition and re-amputation.

Conclusions/Significance

We show that the caudal fin has an almost unlimited capacity to regenerate. Even after inhibition of regeneration caused by the loss of Wnt/ß-catenin signalling, a new amputation resets the regeneration capacity within the caudal fin, suggesting that blastema formation does not depend on a pool of stem/progenitor cells that require Wnt/ß-catenin signalling for their survival.  相似文献   

6.
7.
Age‐related changes are usually overlooked in perennial grass research; when they are considered it is usually as a change in plant size (e.g., biomass). Whether other physiological or developmental aspects change as stands age, and how those aspects may impact long‐term stand dynamics, remains unclear. Conventional experimental designs study a single stand over multiple growing seasons and thereby confound age‐related changes with growing season conditions. Here we used a staggered‐start experimental design with three repeated planting years over two growing seasons to isolate growing season effects. We studied changes in Miscanthus × giganteus phenology during its yield‐building stage (first 3 years) and estimated age, growing season and nitrogen (N) effects on development using nonlinear regression parameters. Stand age clearly changed plant growth; faster developmental rates were usually seen in 1‐year‐old stands (young), but because 2‐ and 3‐year‐old stands (mature) emerged 3 months earlier than newly planted stands they produced 30% more stems with 30%–60% more leaves. Nitrogen fertilization modulated some age‐related phenological changes. Fertilized 2‐year‐old stands reached similar stem densities as unfertilized 3‐year‐old stands and had fewer number of senesced leaves like 1‐year‐old stands. In addition, N fertilization had no effect on young M. × giganteus, but extended mature stands’ growing season more than 2 weeks by hastening emergence and delaying senescence. It also delayed flowering regardless of stand age. Our results suggest that, along with changes in size, M. × giganteus stands showed shifts in developmental strategies: young stands emerged later and developed faster, while mature stands grew for longer but more slowly. In temperate regions, where hard frost events are likely to interrupt development in late autumn, rapid early development is critical to plant survival. Nonlinear regression parameter differences proved effective in identifying phenological shifts.  相似文献   

8.
Epimorphic regeneration of fins was studied in different ray-finned fishes (Actinopterygii), but species representing the phylogenetically basal lineages of the taxon have remained outside the attention of researchers. Information on the regenerative abilities of these groups is important both for understanding the evolutionary origins of the epimorphic regeneration phenomenon and for assessing the universality of regenerative potencies in Actinopterygii. Addressing this problem, we studied for the first time fin regeneration in two members of the archaic family Polypteridae: the ropefish (Erpetoichthys calabaricus) and the Senegal bichir (Polypterus senegalus). Along with the ability to regenerate the bony rays of fins, widespread among Actinopterygii, polypterids show the ability to effectively regenerate the endoskeleton and musculature of their fins. This unusual feature allows us to suggest polypterids as new model organisms for the study of the mechanisms of vertebrate limb regeneration.  相似文献   

9.
An animal's ability to regrow lost tissues or structures can vary greatly during its life cycle. The annelid Capitella teleta exhibits posterior, but not anterior, regeneration as juveniles and adults. In contrast, embryos display only limited replacement of specific tissues. To investigate when during development individuals of C. teleta become capable of regeneration, we assessed the extent to which larvae can regenerate. We hypothesized that larvae exhibit intermediate regeneration potential and demonstrate some features of juvenile regeneration, but do not successfully replace all lost structures. Both anterior and posterior regeneration potential of larvae were evaluated following amputation. We used several methods to analyze wound sites: EdU incorporation to assess cell proliferation; in situ hybridization to assess stem cell and differentiation marker expression; immunohistochemistry and phalloidin staining to determine presence of neurites and muscle fibers, respectively; and observation to assess re-epithelialization and determine regrowth of structures. Wound healing occurred within 6 h of amputation for both anterior and posterior amputations. Cell proliferation at both wound sites was observed for up to 7 days following amputation. In addition, the stem cell marker vasa was expressed at anterior and posterior wound sites. However, growth of new tissue was observed only in posterior amputations. Neurites from the ventral nerve cord were also observed at posterior wound sites. De novo ash expression in the ectoderm of anterior wound sites indicated neuronal cell specification, although the absence of elav expression indicated an inability to progress to neuronal differentiation. In rare instances, cilia and eyes re-formed. Both amputations induced expanded expression of the myogenesis gene MyoD in preexisting tissues. Our results indicate that amputated larvae complete early, but not late, stages of regeneration, which indicates a gradual acquisition of regenerative ability in C. teleta. Furthermore, amputated larvae can metamorphose into burrowing juveniles, including those missing brain and anterior sensory structures. To our knowledge, this is the first study to assess regenerative potential of annelid larvae.  相似文献   

10.
11.
In contrast to mammals, teleost fish exhibit an enormous potential to regenerate adult spinal cord tissue after injury. However, the mechanisms mediating this ability are largely unknown. Here, we analyzed the major processes underlying structural and functional regeneration after amputation of the caudal portion of the spinal cord in Apteronotus leptorhynchus, a weakly electric teleost. After a transient wave of apoptotic cell death, cell proliferation started to increase 5 days after the lesion and persisted at high levels for at least 50 days. New cells differentiated into neurons, glia, and ependymal cells. Retrograde tract tracing revealed axonal re-growth and innervation of the regenerate. Functional regeneration was demonstrated by recovery of the amplitude of the electric organ discharge, a behavior generated by spinal motoneurons. Computer simulations indicated that the observed rates of apoptotic cell death and cell proliferation can adequately explain the re-growth of the spinal cord. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Amphibians and fish often regenerate lost parts of their appendages (tail, limb, and fin) after amputation. Limb regeneration in adult amphibians provides an excellent model for appendage (limb) regeneration through 3D morphogenesis along the proximodistal, dorsoventral, and anteroposterior axes in mammals, because the limb is a homologous organ among amphibians and mammals. However, manipulating gene expression in specific appendages of adult amphibians remains difficult; this in turn hinders elucidation of the molecular mechanisms underlying appendage regeneration. To address this problem, we devised a system for appendage-specific gene induction using a simplified protocol named the “agarose-embedded heat shock (AeHS) method” involving the combination of a heat-shock-inducible system and insertion of an appendage in a temperature-controlled agarose gel. Gene expression was then induced specifically and ubiquitously in the regenerating limbs of metamorphosed amphibians, including a frog (Xenopus laevis) and newt (Pleurodeles waltl). We also induced gene expression in the regenerating tail of a metamorphosed P. waltl newt using the same method. This method can be applied to adult amphibians with large body sizes. Furthermore, this method enables simultaneous induction of gene expression in multiple individuals; further, the data are obtained in a reproducible manner, enabling the analysis of gene functions in limb and tail regeneration. Therefore, this method will facilitate elucidation of the molecular mechanisms underlying appendage regeneration in amphibians, which can support the development of regenerative therapies for organs, such as the limbs and spinal cord.  相似文献   

13.
Aging leads to increased cellular senescence and is associated with decreased potency of tissue‐specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32–86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A, SA‐β‐gal, DNA damage γH2AX, telomere length, senescence‐associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK‐ATTAC or wild‐type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67‐, EdU‐positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart.  相似文献   

14.
Regeneration of lost organs involves complex processes, including host defense from infection and rebuilding of lost tissues. We previously reported that Xenopus neuronal pentraxin I (xNP1) is expressed preferentially in regenerating Xenopus laevis tadpole tails. To evaluate xNP1 function in tail regeneration, and also in tail development, we analyzed xNP1 expression in tailbud embryos and regenerating/healing tails following tail amputation in the ‘regeneration’ period, as well as in the ‘refractory’ period, when tadpoles lose their tail regenerative ability. Within 10 h after tail amputation, xNP1 was induced at the amputation site regardless of the tail regenerative ability, suggesting that xNP1 functions in acute phase responses. xNP1 was widely expressed in regenerating tails, but not in the tail buds of tailbud embryos, suggesting its possible role in the immune response/healing after an injury. xNP1 expression was also observed in neural tissues/primordia in tailbud embryos and in the spinal cord in regenerating/healing tails in both periods, implying its possible roles in neural development or function. Moreover, during the first 48 h after amputation, xNP1 expression was sustained at the spinal cord of tails in the ‘regeneration’ period tadpoles, but not in the ‘refractory’ period tadpoles, suggesting that xNP1 expression at the spinal cord correlates with regeneration. Our findings suggest that xNP1 is involved in both acute phase responses and neural development/functions, which is unique compared to mammalian pentraxins whose family members are specialized in either acute phase responses or neural functions.  相似文献   

15.
Certain fish and amphibians regenerate entire fins and limbs after amputation, whereas such potential is absent in birds and limited in mammals to digit tips [1, 2]. Additionally, regenerative success can change during life stages. Anuran tadpoles gradually lose the capacity to regenerate limbs [3,?4], and digit regeneration occurs more effectively in fetal mice and human children than adults [5-8]. Little is known about mechanisms that control regenerative capacity. Here, we identify an unexpected difference between male and female zebrafish in the regenerative potential of a major appendage. Males display regenerative defects in amputated pectoral fins, caused by impaired blastemal proliferation. This regenerative failure emerges after sexual maturity, is mimicked in androgen-treated females, and is suppressed in males by androgen receptor antagonism. Androgen signaling maintains expression of dkk1b and igfbp2a, which encode secreted inhibitors of Wnt and Igf signaling, respectively. Furthermore, the regulatory target of Wnts and Igfs, GSK3β, is inefficiently inactivated in male fin regenerates compared with females. Pharmacological inhibition of GSK3 in males increases blastemal proliferation and restores regenerative pattern. Our findings identify a natural sex bias in appendage regenerative capacity and indicate an underlying regulatory circuit in which androgen locally restricts key morphogenetic programs after amputation.  相似文献   

16.
Recent studies showing the therapeutic effect of young blood on aging‐associated deterioration of organs point to young blood as the solution for clinical problems related to old age. Given that defective autophagy has been implicated in aging and aging‐associated organ injuries, this study was designed to determine the effect of young blood on aging‐induced alterations in hepatic function and underlying mechanisms, with a focus on autophagy. Aged rats (22 months) were treated with pooled plasma (1 ml, intravenously) collected from young (3 months) or aged rats three times per week for 4 weeks, and 3‐methyladenine or wortmannin was used to inhibit young blood‐induced autophagy. Aging was associated with elevated levels of alanine transaminase and aspartate aminotransferase, lipofuscin accumulation, steatosis, fibrosis, and defective liver regeneration after partial hepatectomy, which were significantly attenuated by young plasma injections. Young plasma could also restore aging‐impaired autophagy activity. Inhibition of the young plasma‐restored autophagic activity abrogated the beneficial effect of young plasma against hepatic injury with aging. In vitro, young serum could protect old hepatocytes from senescence, and the antisenescence effect of young serum was abrogated by 3‐methyladenine, wortmannin, or small interfering RNA to autophagy‐related protein 7. Collectively, our data indicate that young plasma could ameliorate age‐dependent alterations in hepatic function partially via the restoration of autophagy.  相似文献   

17.
18.
The immune status of young‐of‐the‐year (YOY) winter flounder Pseudopleuronectes americanus was evaluated in fish collected from six areas around Long Island, NY, U.S.A. representing more urban areas with high population density in the west, to less densely populated more rural areas in to the east. Gene expression markers for innate immunity (pleurocidin) and contaminant exposure (cytochrome P4501A; cyp1a) were measured in liver and fin of fish collected at each site. Expression of pleurocidin was significantly higher in fin than liver, but was highly variable among individuals. Some statistically significant differences in pleurocidin expression among sites were observed, although elevated levels were not associated with degree of urbanization. Expression was related in part to fish size: a positive correlation between expression and total length (LT) of fish was observed with the largest LT class (>125 mm) exhibiting significantly elevated pleurocidin expression as compared with fish in the smaller LT class. This indicates that immune competency may increase with age. No site‐specific differences in cyp1a expression were observed. These data suggest that exposure to aromatic hydrocarbon contaminants is fairly widespread throughout the study area and that any differences in pleurocidin expression in YOY P. americanus are probably due to other factors. Antimicrobial activity was also measured as a functional indicator of immune response. Activity was highly variable, showing no significant site‐specific differences, and no significant correlation to pleurocidin expression. The lack of correlation between pleurocidin expression and antimicrobial activity indicates that other antimicrobial peptides may be active against the bacteria tested or that other factors are influencing antimicrobial activity. This is the first quantitative evaluation of pleurocidin expression in YOY P. americanus from an urban area. Further work is needed to characterize factors controlling pleurocidin expression, as well as other indicators of immune response in young fish.  相似文献   

19.
The greenfin horse‐faced filefish, Thamnaconus septentrionalis, is a valuable commercial fish species that is widely distributed in the Indo‐West Pacific Ocean. This fish has characteristic blue–green fins, rough skin and a spine‐like first dorsal fin. Thamnaconus septentrionalis is of conservation concern because its population has declined sharply, and it is an important marine aquaculture fish species in China. Genomic resources for the filefish are lacking, and no reference genome has been released. In this study, the first chromosome‐level genome of T. septentrionalis was constructed using nanopore sequencing and Hi‐C technology. A total of 50.95 Gb polished nanopore sequences were generated and were assembled into a 474.31‐Mb genome, accounting for 96.45% of the estimated genome size of this filefish. The assembled genome contained only 242 contigs, and the achieved contig N50 was 22.46 Mb, a surprisingly high value among all sequenced fish species. Hi‐C scaffolding of the genome resulted in 20 pseudochromosomes containing 99.44% of the total assembled sequences. The genome contained 67.35 Mb of repeat sequences, accounting for 14.2% of the assembly. A total of 22,067 protein‐coding genes were predicted, 94.82% of which were successfully annotated with putative functions. Furthermore, a phylogenetic tree was constructed using 1,872 single‐copy orthologous genes, and 67 unique gene families were identified in the filefish genome. This high‐quality assembled genome will be a valuable resource for a range of future genomic, conservation and breeding studies of T. septentrionalis.  相似文献   

20.
Zebrafish have the remarkable ability to regenerate body parts including the heart and fins by a process referred to as epimorphic regeneration. Recent studies have illustrated that similar to adult zebrafish, early life stage larvae also possess the ability to regenerate the caudal fin. A comparative microarray analysis was used to determine the degree of conservation in gene expression among the regenerating adult caudal fin, adult heart, and larval fin. Results indicate that these tissues respond to amputation/injury with strikingly similar genomic responses. Comparative analysis revealed raldh2, a rate-limiting enzyme for the synthesis of retinoic acid, as one of the most highly induced genes across the three regeneration platforms. In situ localization and functional studies indicate that raldh2 expression is critical for the formation of wound epithelium and blastema. Patterning during regenerative outgrowth was considered to be the primary function of retinoic acid signaling; however, our results suggest that it is also required for early stages of tissue regeneration. Expression of raldh2 is regulated by Wnt and fibroblast growth factor/ERK signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号