首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For decades, enterocyte brush border microvilli have been viewed as passive cytoskeletal scaffolds that serve to increase apical membrane surface area. However, recent studies revealed that in the in vitro context of isolated brush borders, myosin-1a (myo1a) powers the sliding of microvillar membrane along core actin bundles. This activity also leads to the shedding of small vesicles from microvillar tips, suggesting that microvilli may function as vesicle-generating organelles in vivo. In this study, we present data in support of this hypothesis, showing that enterocyte microvilli release unilamellar vesicles into the intestinal lumen; these vesicles retain the right side out orientation of microvillar membrane, contain catalytically active brush border enzymes, and are specifically enriched in intestinal alkaline phosphatase. Moreover, myo1a knockout mice demonstrate striking perturbations in vesicle production, clearly implicating this motor in the in vivo regulation of this novel activity. In combination, these data show that microvilli function as vesicle-generating organelles, which enable enterocytes to deploy catalytic activities into the intestinal lumen.  相似文献   

2.
An ordered membrane-cytoskeleton network in squid photoreceptor microvilli   总被引:6,自引:0,他引:6  
To study the organization of microvilli in the photoreceptor cells of an invertebrate. X-ray diffraction patterns were obtained from aldehyde-fixed squid retinas to a resolution of (40 Å)?1 and correlated with results from electron microscopy and sodium dodecyl sulphate/polyacrylamide gel electrophoresis. Squid photoreceptor microvilli are packed in extensive hexagonal arrays; in addition each microvillus has a hexagonal substructure. Image reconstruction from thin section electron micrographs shows that the microvilli are linked together with specialized membrane junctions at their neighbour contacts, and phosphotungstic acid-stained sections show a central cytoskeleton connected to the membrane by side-arms.The X-ray patterns also reveal two axial periodicities in the microvilli. A weak and diffuse (50 Å)?1 band is tentatively assigned to rhodopsin molecules ordered in the plane of the membrane. In addition, an arc at (85 Å)?1 is attributed to a cytoplasmic or extracellular structure.Sodium dodecyl sulphate/polyacrylamide gel electrophoresis of the isolated microvilli shows that the major component, rhodopsin, comprises about 50% of the total protein. There are two major detergent-insoluble polypeptides with molecular weights of 145,000 and 42,000. The 42,000 component is identified as actin by papain digestion fragment mapping.Cephalopod photoreceptors are highly sensitive to the polarization vector of linearly polarized light. In consequence, the linear rhodopsin chromophores must be aligned relative to the microvillar axes. The membrane junctions and cytoskeleton described here may provide a mechanism for maintaining this rhodopsin alignment.  相似文献   

3.
Microfilament interactions with the plasma membranes of animal cells appear to vary with cell type and localization. In the erythrocyte, actin oligomers are associated with the membrane via spectrin and ankyrin. The ends of stress fibers in cultured cells, such as fibroblasts, are attached to the plasma membrane at focal adhesion sites and may involve the protein vinculin as a linking protein. In intestinal brush border microvilli a 110,000 dalton protein links the microfilament bundles to sites on the microvillus. A transmembrane complex containing actin stably associated with a cell surface glycoprotein can be isolated from ascites tumor cell microvilli and can be obtained still associated with microfilaments by gentle extraction and gradient centrifugation of the microvilli. These varied interaction mechanisms are believed to be needed to satisfy the different structural and dynamic requirements of the particular systems.  相似文献   

4.
Summary The ultrastructure of the plasma membrane and the core of microvilli of proximal tubule cells has been investigated by electron microscopy using sectioned and negatively stained material. By the technique of negative staining, a particulated coat is disclosed on the outside of the plasma membrane of microvilli of brush borders isolated from rat, rabbit and ox. This coat is composed of 30 to 60 Å particles and is 150 to 300 Å thick and appears to be a distinguishing feature for the luminal plasma membrane (brush border) of proximal tubule cells. The plasma membrane of the basal part of tubule cells is found to be smooth. By thin sectioning, an axial bundle of 50 to 70 Å diameter filaments regularly arranged in an 1+6 configuration, one axially located filament being surrounded by a ring of six, is disclosed. The distance from the ring of filaments to the inner surface of the plasma membrane is 250–300 Å, the diameter of the ring 300 Å and the center-to-center distance between filaments 120 Å. Negative staining also discloses 60 Å filaments in microvilli of isolated brush borders. Broken off, single microvilli (fingerstalls) are observed with thin filaments projecting from their broken ends. Filaments up to 1 in length are seen. At high magnification, the filaments appear beaded and show strong resemblance with actin filaments isolated from skeletal muscle. Based on present evidence, it is postulated that microvilli constituting renal brush borders possess contractile properties, which may play a role in the absorption process operating at the luminal part of the cells.The authors are indebted to Miss Kirsten Sjöberg for skilled technical assistance, and to the Danish State Research Foundation and the Tuborg Foundation for financial support.  相似文献   

5.
Perinatal changes in the apical surface of the colonic absorptive cells in the rat were studied morphometrically. Cell microvilli length increased from day 20 through neonatal day 3, during which a maximum incremental growth rate was noted between fetal day 22 and neonatal day 1. Microvilli width remained almost constant throughout the period. Enlargement of the apical surface of the microvilli showed a similar developmental pattern as was seen from the measurement of length and surface area of any one of the microvilli. Fetal oral administration of milk in utero caused incremental growth in length and surface area, as well as an associated apical surface enlargement. The present study indicates that the function of the colonic absorptive cells, which is acquired later on in utero, is activated by ingestion of maternal milk after birth.  相似文献   

6.
Microspectrophotometric measurements of isolated crayfish rhabdoms illuminated transversely show that their photosensitive absorption exhibits a dichroic ratio of 2 in situ. The major absorption axis matches the axial direction of the closely parallel microvilli comprising the receptor organelle. Since these microvilli are regularly oriented transversely in about 24 layers, with the axes of the microvilli at 90° in alternate layers, transverse illumination of a properly oriented rhabdom displays alternate dichroic and isotropic bands. Because all the microvilli from any one cell share the same orientation, the layers of microvilli constitute two sets of orthogonal polarization analyzers when illuminated along the normal visual axis. Furthermore, since the dichroic ratio is 2 and transverse absorption in isotropic bands is the same as that in the minor absorbing axis of dichroic bands, the simplest explanation of the analyzer action is that the absorbing dipoles of the chromophores, as in rod and cone outer segments, lie parallel to the membrane surface but are otherwise randomly oriented. The rhabdom's functional dichroism thus arises from its specific fine structural geometry.  相似文献   

7.
Filamentous actin organization in the unfertilized sea urchin egg cortex   总被引:3,自引:0,他引:3  
We have investigated the organization of filamentous actin in the cortex of unfertilized eggs of the sea urchins Strongylocentrotus purpuratus and Lytechinus variegatus. Rhodamine phalloidin and anti-actin immunofluorescent staining of isolated cortices reveal a punctate pattern of fluorescent sources. Comparison of this pattern with SEM images of microvillar morphology and distribution indicates that filamentous actin in the cortex is predominantly localized in the microvilli. Thin-section TEM and quick-freeze deep-etch ultrastructure of isolated cortices demonstrates that this microvillar-associated actin is in a novel organizational state composed of very short filaments arranged in a tight network and that these filament networks form mounds that extend beyond the plane of the plasma membrane. Actin filaments within the networks do not exhibit free ends and make end-on attachments with the membrane only within the region of the evaginating microvilli. Myosin S-1 dissociable crosslinks, 2-3 nm in diameter, are observed between network filaments and between network filaments and the membrane. A second population of long, individual actin filaments is observed in close lateral association with the plasma membrane and frequently complexes with the microvillar actin networks. The filamentous actin of the unfertilized egg cortex may participate in establishing the mechanical properties of the egg surface and may function in nucleating the assembly of cortical actin following fertilization.  相似文献   

8.
Stimulation of gastric acid secretion in parietal cells involves the translocation of the proton pump (H,K-ATPase) from cytoplasmic tubulovesicles to the apical membrane to form long, F-actin-containing, microvilli. Following secretion, the pump is endocytosed back into tubulovesicles. The parietal cell therefore offers a system for the study of regulated membrane recycling, with temporally separated endocytic and exocytic steps. During cAMP-mediated stimulation, an 80 kDa peripheral membrane protein becomes phosphorylated on serine residues. This protein is a major component, together with actin and the pump, of the isolated apical membrane from stimulated cells, but not the resting tubulovesicular membrane. Here we show that the gastric 80 kDa phosphoprotein is closely related or identical to ezrin, a protein whose phosphorylation on serine and tyrosine residues was recently implicated in the induction by growth factors of cell surface structures on cultured cells [Bretscher, A. (1989) J. Cell Biol., 108, 921-930]. Light and electron microscopy reveal that ezrin is associated with the actin filaments of the microvilli of stimulated cells, but not with the filaments in the terminal web. In addition, a significant amount of ezrin is present in the basolateral membrane infoldings of both resting and stimulated cells. Extraction studies show that ezrin is a cytoskeletal protein in unstimulated and stimulated cells, and its association with the cytoskeleton is more stable in stimulated cells. These studies indicate that ezrin is a membrane cytoskeletal linker that may play a key role in the control of the assembly of secretory apical microvilli in parietal cells and ultimately in the regulation of acid secretion. Taken together with the earlier studies, we suggest that ezrin might be a general substrate for kinases involved in the regulation of actin-containing cell surface structures.  相似文献   

9.
Contraction of isolated brush borders from the intestinal epithelium   总被引:31,自引:22,他引:9       下载免费PDF全文
Brush borders isolated from epithelial cells from the small intestine of neonatal rats are able to contract in the presence of ATP and Mg2+; Ca2+ is not required. Contraction is characterized by a pinching-in of the plasma membrane in the region of the zonula adherens and a subsequent rounding of the brush borders. No movement or consistent shortening of the microvilli is observed. The contraction appears to involve the 5- to 7-nm diameter microfilaments in the terminal web which associate with the zonula adherens. These filaments bind heavy meromyosin as do the actin core filaments of the microvilli. A model for contraction is presented in which, in the intact cell, terminal web filaments and core filaments interact to produce shortening of the microvilli.  相似文献   

10.
By either differential or linear gradient ultracentrifugation of bovine or caprine skim milks it was possible to obtain fractions which contained 45–75% of the lipid phosphorus and unesterified cholesterol of the skim milk. Electron microscopy of these fractions revealed the presence of numerous membrane-bound vesicles, microvilli and membrane fragments. Assay of the fractions for certain membrane-bound enzymes; i.e. 5′-nucleotide pyrophosphatase, alkaline phosphatase and ATPases, established the presence of all but the latter in the membrane-rich fractions. The distributions of the enzymes in the various fractions were correlated with their lipid phosphorus and cholesterol contents.Compositions of the phospholipids from skim milk membranes, milk fat globule membranes and the plasma membrane of the lactating mammary cell were observed to be similar and unique for having a relatively high level (20–25%) of sphingomyelin. By virtue of secretory processes, all of these membranes appear to be interrelated with each other and with Golgi vesicle membranes. It is concluded that the membrane material in the skim milk originates primarily from plasma membrane of the lactating cell. The possibiltiy that Golgi vesicle membranes form a substantial part of this material is not precluded by the results of this study.Separation of bovine skim milk on a Sepharose 4B gel column demonstrated that virtually all of the 5′-nucleotidase and lipid phosphorus are recovered together in the void volume of the column. Considering the particle size discriminating characteristics of this gel, the skim milk membrane material appears to be constituted of relatively large structures rather than of discrete subunits.  相似文献   

11.
Membrane-microfilament interactions are being investigated in microvilli isolated from 13762 rat mammary ascites tumor cells. These microvilli are covered by a sialomucin complex, composed of the sialomucin ascites sialoglycoprotein-1 (ASGP-1) and the associated concanavalin A (Con A)-binding glycoprotein ASGP-2. Limited proteolysis of the microvilli releases large, highly glycosylated fragments of ASGP-1 from the microvilli and increases the association of ASGP-2 with the Triton-insoluble microvillar microfilament core (Vanderpuye OA, Carraway CAC, Carraway, KL: Exp Cell Res 178:211, 1988). To analyze the topography of ASGP-2 in the membrane and its association with the microfilament core, microvilli were treated with proteinase K for timed intervals and centrifuged. The pelleted microvilli were extracted with Triton X-100 for the preparation of microfilament cores and Triton-soluble proteins or with 0.1 M carbonate, pH 11, for the preparation of microvillar membranes depleted of peripheral membrane proteins. These microvilli fractions were analyzed by dodecyl sulfate gel electrophoresis, lectin blotting with Con A and L-phytohemagglutinin, and immunoblotting with anti-ASGP-2. The earliest major proteolysis product from this procedure was a 70 kDa membrane-bound fragment. At longer times a 60 kDa released fragment, 30-40 kDa Triton-soluble fragments, and 25-30 kDa membrane- and microfilament-associated fragments were observed. Phalloidin shift analysis of microfilament-associated proteins on velocity sedimentation gradients indicated that the 25-30 kDa fragments were strongly associated with the microfilament core. From these studies we propose that ASGP-2 has a site for indirect association with the microfilament core near the membrane on a 15-20 kDa segment.  相似文献   

12.
Microfilament-associated proteins and membrane-microfilament interactions are being investigated in microvilli isolated from 13,762 rat mammary ascites tumor cells. "Phalloidin shift" analyses on velocity sedimentation gradients of Triton X-100 extracts of [3H]-glucosamine-labeled microvilli identified a 120-kDa cell-surface glycoprotein associated with the microvillar microfilament core. The identification was verified by concanavalin A (Con A) blots of one- and two-dimensional (2D) electrophoresis gels of sedimented microfilament cores. By 2D-electrophoresis and lectin analyses the 120-kDa protein appeared to be a fraction of ASGP-2, the major Con A-binding glycoprotein of the sialomucin complex of the 13,762 cells. This identity was confirmed by immunoblot analyses using immunoblot-purified anti-ASGP-2 from anti-membrane serum prepared against microvillar membranes. Proteolysis of the microvilli with subtilisin or trypsin resulted in an increase in the amount of ASGP-2 associated with the microfilament cores. An increase was also observed with sialidase treatment of the microvilli, suggesting that negative charges, probably present on the highly sialated sialomucin ASGP-1 of the ASGP-1/ASGP-2 sialomucin complex, reduce ASGP-2 association with the microfilament core. Proteolysis of isolated microvillar membranes, which contain actin but not microfilaments, also increased the association of ASGP-2 with a Triton-insoluble, actin-containing membrane fraction. Purified ASGP-2 does not bind to microfilaments in sedimentation assays. Since the Triton-insoluble membrane residue is enriched in an actin-containing transmembrane complex, which contains a different glycoprotein, we suggest that the ASGP-2 is binding indirectly via this complex to the microfilament core in the intact microvilli.  相似文献   

13.
CLIC-5A is a member of the chloride intracellular channel protein family, which is comprised of six related human genes encoding putative chloride channels. In this study, we found that reconstitution of purified recombinant CLIC-5A into artificial liposomes resulted in a dose-dependent chloride efflux that was sensitive to the chloride channel blocker IAA-94. CLIC-5A was originally isolated as a component of an ezrin-containing cytoskeletal complex from human placental microvilli. Here we show that similar protein complexes can be isolated using either immobilized CLIC-5A or the C-terminal F-actin-binding domain of ezrin and that actin polymerization is required for de novo assembly of these complexes. To investigate the behavior of CLIC-5A in vivo, JEG-3 placental choriocarcinoma cells were stably transfected with epitope-tagged CLIC-5A. In fixed cells, CLIC-5A displayed a polarized distribution and colocalized with ezrin in apical microvilli. Microvillar localization of CLIC-5A was retained after Triton X-100 extraction and was disrupted by treatment with latrunculin B. In transient transfections assays, we mapped a region between residues 20 and 54 of CLIC-5A that is required for targeting of CLIC-5A to microvilli in JEG-3 cells. Interestingly, expression of CLIC-5A in JEG-3 cells did not enhance the rate of iodide efflux in intact cells, suggesting that if CLIC-5A is a chloride channel, its channel activity may be restricted to intracellular membrane compartments in these cells. Regardless of its role in ion transport, CLIC-5A, like ezrin, may play an important role in the assembly or maintenance of F-actin-based structures at the cell cortex.  相似文献   

14.
Summary Dimethylbenzanthracene-induced rat mammary tumours consist of lobules of tumours cells surrounded by connective tissue. The interstitial connective tissue proteins, collagen types I, III and V, fibronectin and elastin are largely restricted to the interlobular connective tissue. The tumour lobules are surrounded by a basement membrane that stains with antiserum to laminin. Electron microscopy reveals a greatly thickened basement membrane to which striated interstitial collagen fibres are closely juxtaposed. The lumina within the tumour lobules are of two types. In the first type, the luminal surface is characterized by the presence of microvilli and tight junctions are reacts with antiserum to rat milk fat globule membrane. In the second type, the luminal surface is flattened and lined by a thickened basement membrane that stains with antiserum to laminin and type IV collagen. These abnormal patterns of growth and differentiation may be partly a consequence of the disorganization of extracellular matrix components at the interface between the tumour epithelial cells and the surrounding stroma.  相似文献   

15.
We have explored the development of the brush border in adult chicken enterocytes by analyzing the cytoskeletal protein and mRNA levels as enterocytes arise from crypt stem cells and differentiate as they move toward the villus. At the base of the crypt, a small population of cells contain a rudimentary terminal web and a few short microvilli with long rootlets. These microvilli appear to arise from bundles of actin filaments which nucleate on the plasma membrane. The microvilli apparently elongate via the addition of membrane supplied by vesicles that fuse with the microvillus and extend the membrane around the actin core. Actin, villin, myosin, tropomyosin and spectrin, but not myosin I (previously called 110 kD; see Mooseker and Coleman, J. Cell Biol. 108, 2395-2400, 1989) are already concentrated in the luminal cytoplasm of crypt cells, as seen by immunofluorescence. Using quantitative densitometry of cDNA-hybridized RNA blots from cells isolated from crypts, villus middle (mid), or villus tip (tip), we found a 2- to 3-fold increase in villin, calmodulin and tropomyosin steady-state mRNA levels; an increase parallel to morphological brush border development. Actin, spectrin and myosin mRNA levels did not change significantly. ELISA of total crypt, mid and tip cell lysates show that there are no significant changes in actin, myosin, spectrin, tropomyosin, myosin I, villin or alpha-actinin protein levels as the brush border develops. The G-/F-actin ratio also did not change with brush border assembly. We conclude that, although the brush border is not fully assembled in immature enterocytes, the major cytoskeletal proteins are present in their full concentration and already localized within the apical cytoplasm. Therefore brush border formation may involve reorganization of a pool of existing cytoskeletal proteins mediated by the expression or regulation of an unidentified key protein(s).  相似文献   

16.
Summary Large areas of photoreceptor membrane are synthesized in the retinula cells of the crab Leptograpsus variegatus at dusk. Initially, new membrane differentiates from rough endoplasmic reticulum (ER) as large tubules of smooth ER. These tubules transform to concentric ellipsoids of closely apposed pairs of membranes (doublet ER), sometimes passing through an intervening crenate form. The new membrane is transported through bridges of cytoplasm that cross the palisade to the rhabdom region, from which the remains of the rhabdomeres that were built during the previous dusk have been dissolved. The degradation of the old microvilli of one rhabdomere is accomplished without affecting neighbouring rhabdomeres of other cells. New microvilli are assembled in situ from sheets of doublet ER, which are converted to tubules oriented in the same direction as the future microvilli. The cytoplasmic face of the ER remains the cytoplasmic face of the tubules, which become progressively narrower, partly by further longitudinal division, until the final diameter of the microvillus is reached. A central core is often seen in transverse sections of mature microvilli. It may be involved in the final consolidation, but rhabdomeric microvilli are not formed in the same manner as those of intestinal brush border cells. There is no evidence that new membrane passes through the Golgi compartment before incorporation into the rhabdom, as is the case for rod outer segment membrane in vertebrate photoreceptors.  相似文献   

17.
Milk fat globule membranes devoid of intramembranous particles   总被引:1,自引:0,他引:1  
When isolated milk fat globule membranes from bovine, human, and murine (rat) milk were examined by freeze-fracturing most of the membrane faces were devoid of membrane-intercalated particles whereas a minor portion showed relatively few particles, either in clusters or in apparent random distribution. A reduced particle density was also noted in membranes of intra-alveolar milk fat globules of cows and rats, in contrast to high particle densities in the apical plasma membrane of lactating epithelial cells. The observations suggest that certain membrane constituents recognized as intramembranous particles either are displaced from the region of the apical surface of the mammary epithelial cell which is involved in milk fat globule budding or are dislocated and rearranged during the budding process.  相似文献   

18.
The distal regions of the photoreceptor microvilli of tipulid flies are shed to extracellular space during membrane turnover. Before abscission, the microvillar tips undergo a transformation: they become deformed, and after conventional fixation for electron microscopy are relatively electron-lucent compared to the stable, basal microvillar segments. We now show that the electron-lucent segment is an empty bag of membrane whose P-face after freeze-etch preparation appears as densely particulate as the remainder of the microvillus. Transformation is achieved by the local deletion of a microvillar cytoskeleton which consists of a single, axial filament linked to the plasma membrane by side-arms. The filament may be partially preserved by the chelation of Ca2+; the provision of a divalent cation (Mg2+ or Ba2+) stabilizes the side-arms during subsequent fixation, as has been shown previously for the rhabdomeral cytoskeleton of blowflies. Incubation of the isolated retina in the presence of 0.25 mM Ca2+ at room temperature for 10-20 min causes proteolysis of the cytoskeleton which is blocked by as little as 0.5 mM of the thiol protease inhibitors Ep-475 and Ep-459. Loss of the cytoskeleton is accompanied by deformation of all regions of the microvilli. Local deletion of the cytoskeleton from the transformed zone of the normal rhabdom is sufficient to explain deformation of the microvillar tips, but not their subsequent abscission. The intimate association between a Ca2+-activated thiol protease and the cytoskeleton implied by the great rapidity of proteolysis calls for a reassessment of published studies of membrane turnover by radioautography, and of the nature of light-induced damage to arthropod photoreceptor membranes.  相似文献   

19.
Microvilli are actin-rich membrane protrusions common to a variety of epithelial cell types. Within microvilli of the enterocyte brush border (BB), myosin-1a (Myo1a) forms an ordered ensemble of bridges that link the plasma membrane to the underlying polarized actin bundle. Despite decades of investigation, the function of this unique actomyosin array has remained unclear. Here, we show that addition of ATP to isolated BBs induces a plus end-directed translation of apical membrane along microvillar actin bundles. Upon reaching microvillar tips, membrane is "shed" into solution in the form of small vesicles. Because this movement demonstrates the polarity, velocity, and nucleotide dependence expected for a Myo1a-driven process, and BBs lacking Myo1a fail to undergo membrane translation, we conclude that Myo1a powers this novel form of motility. Thus, in addition to providing a means for amplifying apical surface area, we propose that microvilli function as actomyosin contractile arrays that power the release of BB membrane vesicles into the intestinal lumen.  相似文献   

20.
Crustaceans are covered by a cuticle that does not grow. In order for an individual to grow, the cuticle must periodically be shed (ecdysis). Replacement of the old cuticle with a new one depends on processes that require precise timing and control, yet the nature and location of these controls remain unclear. A candidate site for them is within the hypodermal microvilli. These cellular structures extend through pore canals deep into the acellular cuticular matrix. Changes in the lipid composition of hypodermal microvilli could modulate water and ion fluxes and enzyme activities during critical stages of the molt cycle; however, the lipid composition of these structures has not been assessed during the molt cycle. Data presented here show that phospholipids isolated from hypodermal microvilli of Callinectes sapidus initially have elevated levels of n-6 fatty acids that decline steadily beginning just after ecdysis. Experiments with liposomes reveal that n-6 fatty acids decrease the calcium permeability of membranes, suggesting that the initially elevated levels in the cuticle may function to reduce calcium flux from the cuticle into the hypodermis. In addition, the ratio of cholesterol to phospholipid and the proportion of oleic acid in membrane phospholipids are maximal at 6 h post-ecdysis. It is known that changes in cholesterol and oleic acid content alter membrane permeability to water. It is, therefore possible that water flux through hypodermal membranes is also modulated in the early post-molt cuticle. Changes in microvillar lipid composition might serve importantly to control biomineralization in the post-ecdysal cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号