首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
M double-stranded RNA (MdsRNA) plasmid mutants were obtained by mutagenesis and screening of a diploid killer culture partially heat cured of the plasmid, so that a high proportion of the cells could be expected to have only on M plasmid. Mutants with neutral (nonkiller [K-], immune [R+]) or suicide (killer [K+], sensitive [R-] phenotypes were examined. All mutants became K- R- sensitives on heat curing of the MdsRNA plasmid, and showed cytoplasmic inheritance by random spore analysis. In some cases, M plasmid mutations were indicated by altered mobility of the MdsRNA by agarose gel electrophoresis or by altered size of in vitro translation products from denatured dsRNA. Neutral mutants were of two types: nonsecretors of the toxin protein or secretors of an inactive toxin. Of three neutral nonsecretors examined, one (NLP-1), probably a nonsense mutation, made a smaller protoxin precursor in vitro and in vivo, and two made full-size protoxin molecules. The in vivo protoxin of 43,000 molecular weight was unstable in the wild type and kinetically showed a precursor-product relationship to the processed, secreted 11,000-molecular-weight toxin. In one nonsecretor (N1), the protoxin appeared more stable in a pulse-chase experiment, and could be altered in a recognition site required for protein processing.  相似文献   

3.
4.
Synthesis and processing of killer toxin from Ustilago maydis virus P4   总被引:1,自引:0,他引:1  
The synthesis of toxin protein from Ustilago maydis virus (UmV) strain P4 was studied in vitro and in vivo. The protein synthesized in vitro and in vivo has a molecular weight of approximately 30 kd whereas the native toxin has a molecular weight of about 12 kd. In the presence of protease inhibitors and glycosylation inhibitors, toxin protein synthesized in vivo showed higher molecular weight products that could be immunoprecipitated with toxin antibodies. These results suggest that the UmV P4 toxin protein is synthesized as a preprotein, which upon processing results in the 12 kd secreted form toxin.  相似文献   

5.
Killer toxin secretion was blocked at the restrictive temperature in Saccharomyces cerevisiae sec mutants with conditional defects in the S. cerevisiae secretory pathway leading to accumulation of endoplasmic reticulum (sec18), Golgi (sec7), or secretory vesicles (sec1). A 43,000-molecular-weight (43K) glycosylated protoxin was found by pulse-labeling in all sec mutants at the restrictive temperature. In sec18 the protoxin was stable after a chase; but in sec7 and sec1 the protoxin was unstable, and in sec1 11K toxin was detected in cell lysates. The chymotrypsin inhibitor tosyl-l-phenylalanyl chloromethyl ketone (TPCK) blocked toxin secretion in vivo in wild-type cells by inhibiting protoxin cleavage. The unstable protoxin in wild-type and in sec7 and sec1 cells at the restrictive temperature was stabilized by TPCK, suggesting that the protoxin cleavage was post-sec18 and was mediated by a TPCK-inhibitable protease. Protoxin glycosylation was inhibited by tunicamycin, and a 36K protoxin was detected in inhibited cells. This 36K protoxin was processed, but toxin secretion was reduced 10-fold. We examined two kex mutants defective in toxin secretion; both synthesized a 43K protoxin, which was stable in kex1 but unstable in kex2. Protoxin stability in kex1 kex2 double mutants indicated the order kex1 --> kex2 in the protoxin processing pathway. TPCK did not block protoxin instability in kex2 mutants. This suggested that the KEX1- and KEX2-dependent steps preceded the sec7 Golgi block. We attempted to localize the protoxin in S. cerevisiae cells. Use of an in vitro rabbit reticulocyte-dog pancreas microsomal membrane system indicated that protoxin synthesized in vitro could be inserted into and glycosylated by the microsomal membranes. This membrane-associated protoxin was protected from trypsin proteolysis. Pulse-chased cells or spheroplasts, with or without TPCK, failed to secrete protoxin. The protoxin may not be secreted into the lumen of the endoplasmic reticulum, but may remain membrane associated and may require endoproteolytic cleavage for toxin secretion.  相似文献   

6.
7.
Strains of Saccharomyces cerevisiae harboring M1-dsRNA, the determinant of type 1 killer and immunity phenotypes, secrete a dimeric 19-kd toxin that kills sensitive yeast cells by the production of cation-permeable pores in the cytoplasmic membrane. The preprotoxin, an intracellular precursor to toxin, has the domain sequence delta-alpha-gamma-beta where alpha and beta are the 9.5-and 9.0-kd subunits of secreted toxin. Plasmids containing a partial cDNA copy of M1, in which alpha, gamma, and beta are fused to the PH05 promoter and signal peptide, have previously been shown to express phosphate-repressible toxin production and immunity. Here the construction of a complete DNA copy of the preprotoxin gene and its mutagenesis are described. Analysis of the expression of these mutants from the PH05 promoter elucidates the functions of the preprotoxin domains. delta acts as a leader peptide and efficiently mediates the secretion, glycosylation and maturation of killer toxin. Mutations within the beta subunit indicate it to be essential for binding of toxin to and killing of whole cells but unnecessary for the killing of spheroplasts. Mutations within the putative active site of alpha prevent killing of both cells and spheroplasts. The probable role of beta is therefore recognition and binding to the cell wall receptor whereas alpha is the active ionophore. Mutations within alpha causing loss of toxicity also cause loss of immunity, while the mutants described within gamma and beta retain partial or complete immunity. Expression of gamma without alpha or beta confers no phenotype. The immunity determinant may minimally consist of the alpha domain and the N-terminal portion of gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
C T Choma  H Kaplan 《Biochemistry》1990,29(49):10971-10977
The action of trypsin or papain on the 130-kDa crystal protein (protoxin) from Bacillus thuringiensis subsp. kurstaki HD-73 yields a 67-kDa proteinase-resistant toxic fragment (toxin) which is derived from the N-terminal half of the molecule. Sensitivity to proteolysis and fluorescence emission spectroscopy showed that the toxin unfolded to a much greater extent in 6 M guanidinium chloride (GuHCl) than in 8 M urea. Protoxin also unfolded extensively in 6 M GuHCl, whereas in 8 M urea only the C-terminal half of the molecule had unfolded extensively. Both unfolded protoxin and unfolded toxin refolded to their native and biologically active conformations. The biphasic unfolding observed for protoxin suggests that the C-terminal half of the molecule unfolded rapidly, whereas the N-terminal toxic moiety unfolded at a much slower rate, similar to that of the free 67-kDa toxin. A 67-kDa fragment, derived from the N-terminal half of the molecule, could be generated from the protoxin in the presence of either urea or GuHCl by treatment with proteinases. Compared to toxin in denaturants, this fragment was found to be more sensitive to proteolysis. However, on removal of the denaturants the fragment had the same proteinase resistance and cytolytic activity as native toxin. The increased proteinase sensitivity of the fragment generated in the presence of denaturants appears to be due to a perturbation in the conformation of the N-terminal toxic moiety. This perturbation is attributed to the unfolding of the C-terminal region of the protoxin prior to its proteolysis to yield the 67-kDa fragment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
11.
A full-length cDNA of the M1 double-stranded RNA killer preprotoxin coding region successfully directed the synthesis of secreted K1 toxin when expressed in Saccharomyces cerevisiae from a plasmid vector. Three protein species immunoreactive with antitoxin antiserum were detected intracellularly in transformants harboring this killer cDNA plasmid. These toxin precursor species were characterized by using secretory-defective hosts, by comparative electrophoretic mobilities, and by tunicamycin susceptibility. Such studies indicate that these three protein species represent intermediates generated by signal cleavage of the preprotoxin and its subsequent glycosylation and provide evidence that these events occur posttranslationally.  相似文献   

12.
13.
Phytohemagglutinin (PHA) is a family of tetrameric isolectins which accumulate in the protein bodies of developing Phaseolus vulgaris cotyledons. Each tetramer contains erythroagglutinating (E) or lymphocyte-mitogenic (L) subunits, or a combination of both. The subunits have Mr around 33000, E being slightly larger than L. Phytohemagglutinin is a glycoprotein, and its carbohydrate moiety contains N-acetylglucosamine, mannose, fucose and xylose, indicating that this protein has complex oligosaccharide sidechains. Several steps in the biosynthesis and in the cotranslational and post-translational processing of the glycopolypeptides of PHA have been identified. The polypeptides of PHA are synthesized by polysomes attached to the endoplasmic reticulum. The glycosylation of the polypeptides is a cotranslational process, in which each PHA polypeptide usually acquires two oligosaccharide sidechains. The oligosaccharides of PHA isolated from the endoplasmic reticulum are susceptible to digestion with alpha-mannosidase and endo-beta-N-acetylglucosaminidase H indicating that they are of the high-mannose type. In the presence of tunicamycin two unglycosylated polypeptides of PHA are synthesized, indicating that the differences in Mr between the E and L subunits of PHA are not due to differences in glycosylation alone. Transport of PHA to the protein bodies is mediated by the Golgi apparatus where at least part of the oligosaccharide chains of PHA are modified [ Chrispeels , M. J. (1983) Planta ( Berl .) 157, 454-461, and 158, 140-151]. The modified oligosaccharide chains of PHA are then gradually trimmed to a smaller size when the protein is already in the protein bodies. This processing results in an increase in the mobility of the PHA subunits in denaturing polyacrylamide gels.  相似文献   

14.
We studied mechanisms of resistance to Bacillus thuringiensis insecticidal crystal protein Cry1C in the diamondback moth, Plutella xylostella (L.). Binding assays with midgut brush border membrane vesicles prepared from whole larvae showed no significant difference between resistant and susceptible strains in binding of radioactively-labeled Cry1C. These results indicate that reduced binding of Cry1C to midgut membrane target sites did not cause resistance to Cry1C. Thus, the mechanism of resistance to Cry1C differs from that observed in several previously reported cases of resistance to Cry1A toxins in diamondback moth. We tested Cry1C toxin and Cry1C crystalline protoxin against resistant and susceptible larvae using leaf disk bioassays. After adjusting for the size difference between Cry1C toxin and protoxin, we found that with resistant larvae, toxin was significantly more toxic than protoxin. In contrast, with susceptible larvae, no significant difference in toxicity occurred between Cry1C toxin and protoxin. The resistance ratios for Cry1C were 19 for toxin and 48 for protoxin. These results suggest that reduced conversion of Cry1C protoxin to toxin is a minor mechanism of resistance to Cry1C. Because neither reduced binding nor reduced conversion of protoxin to toxin appear to be major mechanisms, one or more other mechanisms are important in diamondback moth resistance to Cry1C.  相似文献   

15.
The M2 double-stranded (ds) RNA species encodes toxin and resistance functions in Saccharomyces cerevisiae strains with the K2 killer specificity. RNA sequence analysis reveals the presence of a large open reading frame on the larger heat-cleavage product of M2 dsRNA, which is translated in vitro to yield a 28 kd polypeptide as a major product. The postulated translation initiator AUG triplet is located within a stem and loop structure near the 5' terminus of the positive strand, which also contains plausible 18S and 5.8S ribosomal RNA binding sites. These features may serve to regulate the translation of the K2 toxin precursor. The M1 (from type 1 yeast killers) and M2 dsRNA species lack extensive sequence homology, although specific features are shared, which may represent structural elements required for gene expression and replication.  相似文献   

16.
The major coat protein (gene 8 product) of bacteriophage M13 is an integral membrane protein during infection of host cells. It is synthesized as a larger precursor (procoat) with a leader sequence of 23 amino acids at its amino terminus. In vivo studies have shown that procoat only inserts into the host-cell plasma membrane after its synthesis is completed. We now demonstrate that procoat can post-translationally insert into inverted cytoplasmic membrane vesicles from E. coli and can be processed proteolytically to yield coat protein. Procoat changes from an assembly-competent substrate to an incompetent (denatured) form within minutes after its synthesis; much of the procoat that accumulates during an hour of in vitro synthesis is therefore denatured. These studies emphasize the importance of stringent criteria for the demonstration of obligate cotranslational assembly.  相似文献   

17.
Commercial enzymes and insect gut juice at various concentrations were used to digest Bacillus thuringiensis subsp. sotto Cry1Aa protoxin and examine the fragmentation pattern and effect on insecticidal activity. Trypsin at both high (5 mg/mL) and low (0.05 mg/mL) concentrations converted protoxin to toxin with no difference in insecticidal activity against Bombyx mori larvae. In both cases, the toxin protein had an apparent M(r) of 58.4 kDa (SDS-PAGE). Active toxin of identical M(r) was also produced with low concentrations of Pronase and subtilisin, but at high concentration, it was degraded into two protease-resistant fragments of apparent M(r) 31.8 and 29.6 kDa, and exhibited no insecticidal activity. Sequencing data established the primary cleavage site to be in domain II, the receptor-binding region of the toxin, in an exposed loop between two beta-sheet strands. Fragmentation was not observed, however, when the digests were analyzed by native protein techniques, but rather the toxin molecule appeared to be intact. The amount of activated toxin produced by Choristoneura fumiferana gut juice was markedly reduced when the gut-juice concentration was increased from 1 to 50% and correlated with a loss in insecticidal activity. However, no lower M(r) protease-resistant fragments were evident in the SDS-PAGE of these digests.  相似文献   

18.
We have isolated cDNA clones encoding the entire sequence of the bovine 46 kd cation-dependent mannose 6-phosphate (CD Man-6-P) receptor. Translation of CD Man-6-P receptor mRNA in Xenopus laevis oocytes results in a protein that binds specifically to phosphomannan-Sepharose, thus demonstrating that our cDNA clones encode a functional receptor. The deduced 279 amino acid sequence reveals a single polypeptide chain that contains a putative signal sequence and a transmembrane domain. Trypsin digestion of microsomal membranes containing the receptor and the location of the five potential N-linked glycosylation sites indicate that the receptor is a transmembrane protein with an extracytoplasmic amino terminus. This extracytoplasmic domain is homologous to the approximately 145 amino acid long repeating domains present in the 215 kd cation-independent Man-6-P receptor.  相似文献   

19.
The dynamics of appearance of intracellular proteases in relation to the synthesis of crystal delta-endotoxin was studied to identify the native intracellular protease(s) involved in the proteolytic processing of the 73-kDa protoxin of Bacillus thuringiensis subsp. tenebrionis. In vitro proteolytic activation of the 73-kDa protoxin indicated the possible role of 69-kDa protease in the proteolytic processing of 73-kDa protoxin. The purified 69-kDa protease was able to cause the proteolytic activation of the 73-kDa protoxin to 68-kDa toxin and this conversion was inhibited by ethylenediamine tetraacetic acid and 1,10-phenanthroline.  相似文献   

20.
N Skipper  D Y Thomas    P C Lau 《The EMBO journal》1984,3(1):107-111
Complementary DNA (cDNA) copies of the M1-1, toxin-coding region of the yeast M1 double-stranded RNA (dsRNA) have been cloned and sequenced. These sequences, in combination with the known terminal sequence of M1-1 dsRNA, identify a translation reading frame for a 316 amino acid protein of 34.7 kd, similar in size to the preprotoxin produced from M1 dsRNA by in vitro translation. Potential glycosylation sites in the preprotoxin peptide are identified. Based on its methionine content the extracellular yeast toxin appears to be contained within the C-terminal region of the precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号