首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [3H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [14C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD → nicotinamide mononucleotide → nicotinamide riboside → nicotinic acid riboside → nicotinic acid mononucleotide → nicotinic acid adenine dinucleotide → NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-14C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-14C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide.  相似文献   

2.
Nicotinic acid-6-14C and nicotinamide adenine dinucleotide-carbonyl-14C were rapidly metabolized in T. wilfordii Hook. with formation of all compounds in the pyridine nucleotide cycle. Nicotinic acid-6-14C and the nicotinamide moiety of NAD were efficiently incorporated into wilfordic acid and hydroxywilfordic acid, the pyridinium moieties of the ester alkaloids. The structures of wilfordic acid and hydroxywilfordic acid were confirmed using GLC-MS. The molecular formulae of the four isolated alkaloids were determined by high resolution MS and agreed with earlier results based on elemental analysis.  相似文献   

3.
More than 80% of the intracellular pyridine metabolite pool of human culture cells is trapped by OsO4 fixation. The fixed pyridine metabolites fully exchange with nicotinamide and nicotinic acid but not with nicotinamide adenine dinucleotide. Yet, chromatography of the exchanged compounds reveals that NAD and NADP constitute more than 95%. of the fixed material. Although the mechanism of OsO4 fixation is not fully understood, such fixation has permitted the autoradiographic detection of intracellular pyridine metabolites. Cells of the human cell line, D98/AH2, synthesize pyridine nucleotides during all phases of the cell cycle at rates which do not vary by more than six-fold. There is no difference in the apparent concentration of pyridine metabolites between nucleus and cytoplasm after ten minute or three day pulses with 3H-nicotinic acid. The 3H-labeled pyridine ring is lost from D98/AH2 cells upon transfer to unlabeled medium. In general, the rate of loss is uniform among cells in the population. However, in a small proportion of cells there is little or no loss. Non-dividing cells lose the pyridine ring at approximately the same rate as dividing cells, yet the intracellular concentration of pyridine metabolites is 50% greater in non-dividing cells.  相似文献   

4.
The flavin and pyridine nucleotide coenzymes are involved in the detoxication of autoxidation products of lipids. In tryptophan-nicotinamide metabolism, kynurenine 3-hydroxylase and N1-methylnicotinamide (MNA) oxidase contain FAD as a coenzyme. So, the effects of dietary autoxidation products of linoleic acid on the metabolism of tryptophan-nicotinamide were investigated using rats. The administration of linoleic acid hydroperoxides or secondary products reduced the urinary excretion of xanthurenic acid, nicotinamide and its metabolites such as MNA, N1-methyl-2-pyridone-5-carboxamide (2-Py), and N1-methyl-4-pyridone-3-carboxamide (4-Py) as compared with the group administered saline or linoleic acid. Among the enzyme activities involved in the tryptophan-nicotinamide metabolism, the activity of NAD+ synthetase was decreased by the administration of linoleic acid hydroperoxides or secondary products. The activities of tryptophan oxygenase and 4-Py-forming MNA oxidase were also decreased by the administration of secondary products. These results indicate that the conversion of tryptophan to nicotinamide would be lower in the groups administered the hydroperoxides and secondary products than in saline and linoleic acid groups.  相似文献   

5.
NAD+ levels in resting human lymphocytes obtained from 20 donors were found to be 69.9 ± 21.7 pmols/106 cells. After 3 days of phytohemagglutinin (PHA) stimulation the NAD+ levels rose to 452 ± 198 pmols/106 cells. NADH, NADP+ and NADPH also increased in mitogen-stimulated lymphocytes, but the major portion of the increase in total pyridine nucleotide pools was accounted for by the increase in NAD+. When PHA-stimulated lymphocytes were incubated in nicotinamide-deficient growth medium, there was no significant increase in their total pyridine nucleotide pools; however, the ratios of oxidized to reduced pyridine nucleotides changed in a similar fashion to cells grown in medium containing nicotinamide. When lymphocytes in nicotinamide-deficient medium were stimulated with PHA they increased their levels of DNA synthesis and cell replication in a similar fashion to cells growing in nicotinamide-supplemented media. Human lymphocytes were able to synthesize pyridine nucleotides from nicotinamide or nicotinic acid; however, in the absence of a preformed pyridine ring they did not efficiently use tryptophan for the synthesis of NAD. Uptake of [carbonyl-14C]nicotinamide and conversion to NAD was markedly increased in PHA-stimulated lymphocytes; these cells also showed a marked increase in activity of the enzyme adenosine-triphosphate-nicotinamide mononucleotide (ATP-NMN) adenylyl transferase.  相似文献   

6.
Mouse adrenal tumor cell line Y-129 was grown in cell culture in medium without nicotinamide. Inhibition of growth occurred after the second subculture in the vitamin-deficient medium. Pyridine nucleotides were measured in control and nicotinamide-starved cultures. DPN+ decreased to less than 10% of the normal level after 7 days of vitamin starvation. TPNH dropped to 25% of its normal level in the same period. Plating efficiency decreased from 20% in controls to 10% in 7-day nicotinamide-starved cultures. Steroid production was reduced by approximately 50% in the starved cultures. Sensitivity of the cultures to the lethal effects of the nicotinamide antagonist, 3-acetylpyridine, was inversely proportional to the pyridine nucleotide content of the cells. Reconstitution of nicotinamide in depleted cultures caused a rapid renewal of the pyridine nucleotide levels and complete protection against the effects of 3-acetylpyridine. Recovery and subsequent growth of the cultures did not restore the decreased capacity to produce steroids. Nicotinic acid was not utilized by the cells for the synthesis of pyridine nucleotides in depleted cultures and azaserine did not inhibit the utilization of nicotinamide indicating that DPN+ was synthesized directly via nicotinamide ribonucleotide.  相似文献   

7.
The seedlings of rice, eggplant and tomato at the 5th leaf stage of growth readily absorbed exogenous 14C-nicotinamide through the root and the foliage in water culture. Within the 24 hr period after the bigining of cultivation, the radioactivity gradually translocated from the part treated with 14C-nicotinamide to the whole plant body. This compound was rapidly metabolised in the plants to at least six metabolites, in which three compounds were identified as nicotinic acid, NAD and NADP. 14C-Nicotinic acid was also taken up quickly through the root of rice and its metabolism showed a similar pattern to that of 14C-nicotinamide. The incorporation of radioactivity into NAD and NADP from 14C-nicotinamide added to cultivating solution at a concentration of 0.21 ppm was decreased to 10~20% by the simultaneous addition of unlabeled nicotinic acid at a concentration about 1000 times higher than that of the labeled one. It was concluded that the biosynthesis of these pyridine nucleotides from nicotinamide was chiefly via nicotinic acid. The formation of 14C-nicotinamide in the 14C-nicotinic acid metabolism suggested a breakdown of NAD. Three unknown compounds observed in both the metabolisms described above were not intermediates in the pyridine nucleotide biosynthesis.  相似文献   

8.
Recently, we discovered that nicotinamide riboside and nicotinic acid riboside are biosynthetic precursors of NAD+, which are utilized through two pathways consisting of distinct enzymes. In addition, we have shown that exogenously supplied nicotinamide riboside is imported into yeast cells by a dedicated transporter, and it extends replicative lifespan on high glucose medium. Here, we show that nicotinamide riboside and nicotinic acid riboside are authentic intracellular metabolites in yeast. Secreted nicotinamide riboside was detected with a biological assay, and intracellular levels of nicotinamide riboside, nicotinic acid riboside, and other NAD+ metabolites were determined by a liquid chromatography-mass spectrometry method. A biochemical genomic screen indicated that three yeast enzymes possess nicotinamide mononucleotide 5′-nucleotidase activity in vitro. Metabolic profiling of knock-out mutants established that Isn1 and Sdt1 are responsible for production of nicotinamide riboside and nicotinic acid riboside in cells. Isn1, initially classified as an IMP-specific 5′-nucleotidase, and Sdt1, initially classified as a pyrimidine 5′-nucleotidase, are additionally responsible for dephosphorylation of pyridine mononucleotides. Sdt1 overexpression is growth-inhibitory to cells in a manner that depends on its active site and correlates with reduced cellular NAD+. Expression of Isn1 protein is positively regulated by the availability of nicotinic acid and glucose. These results reveal unanticipated and highly regulated steps in NAD+ metabolism.  相似文献   

9.
Pyridine compounds, including nicotinic acid and nicotinamide, are key metabolites of both the salvage pathway for NAD and the biosynthesis of related secondary compounds. We examined the in situ metabolic fate of [carbonyl-14C]nicotinamide, [2-14C]nicotinic acid and [carboxyl-14C]nicotinic acid riboside in tissue segments of tea (Camellia sinensis) plants, and determined the activity of enzymes involved in pyridine metabolism in protein extracts from young tea leaves. Exogenously supplied 14C-labelled nicotinamide was readily converted to nicotinic acid, and some nicotinic acid was salvaged to nicotinic acid mononucleotide and then utilized for the synthesis of NAD and NADP. The nicotinic acid riboside salvage pathway discovered recently in mungbean cotyledons is also operative in tea leaves. Nicotinic acid was converted to nicotinic acid N-glucoside, but not to trigonelline (N-methylnicotinic acid), in any part of tea seedlings. Active catabolism of nicotinic acid was observed in tea leaves. The fate of [2-14C]nicotinic acid indicates that glutaric acid is a major catabolite of nicotinic acid; it was further metabolised, and carbon atoms were finally released as CO2. The catabolic pathway observed in tea leaves appears to start with the nicotinic acid N-glucoside formation; this pathway differs from catabolic pathways observed in microorganisms. Profiles of pyridine metabolism in tea plants are discussed.  相似文献   

10.
The ricinine content of etiolated seedlings of Ricinus communis increased nearly 12-fold over a 4-day period. In plants quinolinic acid is an intermediate in the de novo pathway for the synthesis of pyridine nucleotides. The only known enzyme in the de novo pathway for pyridine nucleotide biosynthesis, quinolinic acid phosphoribosyltransferase, increased 6-fold in activity over a 4-day period which preceded the onset of ricinine biosynthesis by 1 day. The activity of the remainder of the pyridine nucleotide cycle enzymes in the seedlings, as monitored by the specific activity of nicotinic acid phosphoribosyltransferase and nicotinamide deamidase, was similar to that found in the mature green plant. In the roots of Nicotiana rustica, where the pyridine alkaloid nicotine is synthesized, the level of quinolinic acid phosphoribosyltransferase was 38-fold higher than the level of nicotinic acid phosphoribosyltransferase, whereas in most other plants examined, the specific activity of quinolinic acid phosphoribosyltransferase was similar to the level of activity of enzymes in the pyridine nucleotide cycle itself. A positive correlation therefore exists between the specific activity of a de novo pathway enzyme catalyzing pyridine nucleotide biosynthesis in Ricinus communis and Nicotiana rustica and the biosynthesis of ricinine and nicotine, respectively.  相似文献   

11.
The enzyme utilizing metaphosphate for nicotinamide adenine dinucleotide phosphorylation was purified 500-fold from B. ammoniagenes and its properties were studied. The isolated enzyme appeared homogeneous on disc gel electrophoresis; its molecular weight was determined to be 9.0 × 104 by gel filtration. This enzyme specifically phosphorylated nicotinamide adenine dinucleotide at the optimum pH at 6.0. Of phosphoryl donors tested, metaphosphate was most effective for the reaction, and adenosine-5′-triphosphate was less effective. The activity was inhibited by adenosine-5′-monophosphate, adenosine-5′-diphosphate or reduced pyridine nucleotides. The enzyme did not exhibit catalytic activity in the absence of a divalent cation. We concluded that the enzyme phosphorylating nicotinamide adenine dinucleotide in the presence of metaphosphate is distinct from adenosine-5′-triphosphate-dependent nicotinamide adenine dinucleotide kinase, and tentatively designated it metaphosphate-dependent nicotinamide adenine dinucleotide kinase.  相似文献   

12.
Summary Gastric fundic metabolism was studied by spectroscopic observation in frog mucosa during transitions of secretory status in vitro and by direct measurement of pyridine nucleotides and associated metabolites in biopsies of dog fundic mucosa also during secretory oxidation of the redox components from flavin adenine dinucleotide (FAD) to cytochromea 3. Addition of histamine resulted in reduction of these components with onset of secretion by about 50%. In contrast, the effect of apparently, burimamide and subsequently histamine on the ratio of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide, reduced (NAD+/NADH) was relatively slight. Further, the presence of burimamide substantially reduces the effect of amytal on the pyridine nucleotide spectrum and abolishes the effect of amytal on FAD and the cytochromes. Measurements of lactate, pyruvate, -ketoglutarate, NH3 and glutamate in the dog showed that whereas the calculated NAD+/NADH ratio in the cytoplasm declined with onset of secretion, the calculated mitochondrial ratio rose. No change was noted in the nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide phosphate, reduced (NADP+/NADPH) ratio. It is concluded that (1) H2 antagonists act by blocking substrate flow into the mitochondrial respiratory chain, (2) conversely, histamine stimulation acts at the level of substrate mobilization, and (3) there may be a cross-over in the mitochondrial chain between NAD+ and FAD.  相似文献   

13.
Claviceps purpurea grown on synthetic medium incorporated labeled [7-14]nicotinic acid and [7-14C]nicotinamide into NaMN, des-NAD, NAD, and NADP. Label also appeared in NMN and N-methyl nicotinamide. The specific activities of NAD, NADP, and NMN are compatible with the operation of the Preiss-Handler pathway of NAD biosynthesis (nicotinic acid → NaMN → des-NAD → NAD → NADP). The relative amounts of NaMN:des-NAD:NAD and NADP were about 8:1:36:10 on incubation of Claviceps with nicotinic acid for 6 hr. The incorporation of nicotinamide into NAD proceeds mainly by conversion to nicotinic acid catalyzed by nicotinamide deamidase.Tryptophan ([U-14C]benzene ring) was incorporated into NAD demonstrating the presence of the tryptophan-nicotinic acid pathway. No qualitative difference in pyridine nucleotide intermediates was noted in C. purpurea CPM, which does not produce clavine alkaloids, and Claviceps 47A which does produce clavine alkaloids.  相似文献   

14.
The relative contribution of the two known pyridine nucleotide cycles of Salmonella typhimurium towards the intracellular recycling of nicotinamide adenine dinucleotide was determined. The results indicate that intracellular nicotinamide adenine dinucleotide is recycled by both the four-membered pyridine nucleotide cycle (PNC IV) and the six-membered pyridine nucleotide cycle (PNC VI) with a relative contribution of 60 to 69% and 31 to 40%, respectively. These studies also revealed a nicotinic acid mononucleotide-degradative activity which converts nicotinic acid mononucleotide to nicotinic acid. This represents the first demonstration of a functional PNC IV pathway in S. typhimurium.  相似文献   

15.
It was found that three niacin-related compounds, isonicotinic acid, nicotinamide, and nicotinamide N-oxide, induced granulocytic differentiation in HL-60 cells. We investigated the expression of CD38, which catalyzes the synthesis of cyclic ADP-ribose, a Ca2+ mobilizer, during differentiation by niacin-related compounds. It was found that CD38 was induced by isonicotinic acid, whereas nicotinamide and nicotinamide N-oxide containing an amino group did not induce it. The difference in expression of CD38 may provide some useful information for the elucidation of the mechanisms of cell differentiation.  相似文献   

16.
The metabolic fate of [carbonyl-14C]nicotinamide was surveyed in leaf disks of seven mangrove species, Bruguiera gymnorrhiza, Rhizophora stylosa, Kandeliaobovata, Sonneratia alba, Pemphis acidula, Lumnitzera racemosa and Avicennia marina, with and without 250 mM NaCl. Uptake of [14C]nicotinamide by leaf disks was stimulated by 250 mM NaCl in K. candel, R. stylosa, A. marina and L. racemosa. [Carbonyl-14C]nicotinamide was converted to nicotinic acid and was utilised for the synthesis of nucleotides and nicotinic acid conjugates. Formation of nicotinic acid by the deaminase reaction was rapid; there was little accumulation of nicotinamide in the disks 3 h after administration. Radioactivity from [carbonyl-14C]nicotinamide was incorporated into pyridine nucleotides (mainly NAD and NADP) in all mangrove leaves, and the rates varied from 2% (in L. racemosa) to 15% (S. alba) of the total radioactivity taken up. NaCl generally reduced nicotinic acid salvage for NAD and NADP. In all mangrove leaf disks, the most heavily labelled compounds (up to 70% of total radioactivity) were trigonelline (N-methylnicotinic acid) and/or nicotinic acid N-glucoside. Trigonelline was formed in all mangrove plants, but N-glucoside synthesis was found only in leaves of A. marina and K. obovata. In A. marina, incorporation of radioactivity into N-glucoside (51%) was much greater than incorporation into trigonelline (2%). In general, NaCl stimulates the synthesis of these pyridine conjugates. The rate of decarboxylation of nicotinic acid in roots of A. marina seedlings was much greater than for the corresponding reaction observed in leaves.  相似文献   

17.
The interaction of 3-aminopyridine-adenine dinucleotide, an NAD + 2 analogue which is fluorescent at the pyridine end of the molecule, with rabbit muscle glyceraldehyde-3-phosphate dehydrogenase was investigated. The fluorescence properties of the AAD+ molecule were used to monitor the nicotinamide subsites ou the GPDHase tetramer, the fluorescent aminopyridine moiety of the molecule serving as an intrinsic probe. Although the binding of AAD+ wag found to be negatively co-operative, no conformational changes induced at the nicotinamide subsite upon coenzyme binding were found to be transmitted to neighboring subunits. These findings, in conjunction with our earlier findings and with the observation that different NAD+ analogues which differ in the chemistry of the pyridine moiety bind with different extents of co-operativity, enable us to offer specific roles for the nicotinamide and the adenine subsites in generating the negative co-operativity.It is suggested that the structure of the pyridine moiety of the coenzyme controls the mode of binding of the pyridine moiety to the nicotinamide subsite. This, in turn, controls the orientation of the adenine moiety with respect to its subsite, thereby determining the mode of the interactions between the adenine and its binding domain. As the propagation of conformational changes caused by these interactions to neighboring subunits is believed to be the cause of the negative co-operativity exhibited by this enzyme towards coenzyme binding, the structure of the pyridine moiety controls this phenomenon.  相似文献   

18.
Nicotinamide adenine dinucleotides were extracted and assayed at frequent intervals for 30 seconds prior to and 60 seconds immediately following illumination of Chlorella cells. For these experiments a special illumination vessel was designed which dispensed 1 ml aliquots of algae with no dead volume. —White incandescent illumination of aerated Chlorella caused an immediate oxidation of its pyridine nucleotides. Under similar conditions blue light caused an initial reduction of these coenzymes. — White illumination of the alga perfused with CO2-free air caused a transitory reduction of the pyridine nucleotide followed by an oxidation and a second reduction, Blue light, under similar conditions caused an immediate reduction but no oxidation as seen with white light. — When suspensions were perfused with N2, illumination produced a prompt and rapid oxidation of NADH. The extent of this oxidation was greater in white than in blue light. Under these conditions NADP+ was initially reduced and subsequently, temporarily oxidised. — The evidence offers some support for Lundegårdh's theory that blue light is more effective than red light in the photo-reduction of NADP+. The results are discussed with referemce to the demonstrated in vitro reduction of nicotinamide adenine dinucleotides by chloroplasts and the conflicting reports from in vivo kinetic studies of living photosynthetic organisms. A scheme is proposed to explain the nicotinamide adenine dinucleotide kinetics as observed in these experiments.  相似文献   

19.
We measured both pyridine nucleotide levels and ribonucleotide reductase-specific activity in Yoshida ascites hepatoma cells as a function of growth in vivo and during recruitment from non-cycling to cycling state in vitro. Oxidized nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADP) levels remained unchanged during tumour growth, while NADP+ and reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels were very high in exponentially growing cells and markedly decreased in the resting phase. Ribonucleotide reductase activity paralleled NADP(H) (NADP+ plus NADPH) intracellular content. The concomitant increase in both NADP(H) levels and ribonucleotide reductase activity was also observed during G1-S transition in vitro. Cells treated with hydroxyurea showed a comparable correlation between the pool size of NADP(H) and ribonucleotide reductase activity. On the basis of these findings, we suggest that fluctuations in NADP(H) levels and ribonucleotide reductase activity might play a critical role in cell cycle regulation.  相似文献   

20.
Extracts of Vibrio cholerae were assayed for various enzymatic activities associated with pyridine nucleotide cycle metabolism. The activities measured include NAD glycohydrolase, nicotinamide deamidase, nicotinamide mononucleotide deamidase, and nicotinic acid phosphoribosyltransferase. The results obtained demonstrate the existence in V. cholerae of the five-membered pyridine nucleotide cycle and the potential for a four-membered pyridine nucleotide cycle. The data presented also suggest that most of the NAD glycohydrolase in V. cholerae extracts is not directly related to cholera toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号