共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Leitinger N 《Current opinion in lipidology》2003,14(5):421-430
PURPOSE OF REVIEW: This review will summarize recent evidence demonstrating that biologically active phospholipid oxidation products modulate inflammatory reactions. RECENT FINDINGS: Structural identification of new biologically active oxidized phospholipids and the finding that they can also be formed at inflammatory sites other than the atherosclerotic lesion have expanded the potential role of these compounds in inflammation beyond atherogenesis. Various signaling pathways are induced by oxidized phospholipids, leading to the expression of inflammatory genes by mechanisms that differ from those mediated by the classic inflammatory agonists tumor necrosis factor or lipopolysaccharide. Furthermore, oxidized phospholipids can bind to pattern recognition molecules and thus potently influence inflammation and immune responses during host defense. SUMMARY: During inflammatory processes biologically active lipid oxidation products accumulate that modulate the inflammatory process and may determine the fate and outcome of the body's reaction in acute inflammation during host defense. Oxidized phospholipids may induce and propagate chronic inflammatory processes; however, evidence is accumulating that cells and tissues respond towards these oxidatively formed stress signals also by activation of anti-inflammatory, cytoprotective reactions. 相似文献
3.
4.
The thermal behaviour of phospholipid multilamellar vesicles (MLV) made of various molar percentages of DPPC and LPPC, containing also oxidized LPPC (LPPCox), was studied by use of EPR spectroscopy and n-DSPC spin label in order to determine variations in the membrane fluidity brought about by lipid oxidation. Experimental variables were temperature, ranging from 4 to 44 degrees C, and molar percentage composition of DPPC/LPPC/LPPCox ternary mixture. We found that the presence of LPPCox in a percentage higher than both normal phospholipids' heavily hindered membrane formation, while lower percentage of the oxidized lipid with higher DPPC percentages yielded two-components EPR spectra, showing the presence of two different fluidity domains, indicative of membrane phase separation. When LPPC was the dominant lipid in the ternary mixture, simple EPR spectra were observed, indicating homogeneity of MLV membranes. Phase separation observed in the presence of LPPCox was better visible at lower temperature (12 degrees C or less), and almost disappeared with increasing temperature (36 degrees C or more). Furthermore, the correlation time of 16-DSPC in ternary mixture MLVs with higher LPPC percentage (homogeneous membranes) was not affected by the presence of LPPCox, while it normally increased upon DPPC percentage increase, as readily calculated from the EPR spectra featuring simple bands at 24 degrees C. It is concluded that oxidized lipid induces phase separation in more rigid DPPC-rich membranes, while leaving fluidity unaffected in more fluid LPPC-rich membranes, and at higher temperature. 相似文献
5.
6.
7.
Hepatitis C virus structural proteins impair dendritic cell maturation and inhibit in vivo induction of cellular immune responses 总被引:9,自引:0,他引:9
下载免费PDF全文

Sarobe P Lasarte JJ Zabaleta A Arribillaga L Arina A Melero I Borrás-Cuesta F Prieto J 《Journal of virology》2003,77(20):10862-10871
Hepatitis C virus (HCV) chronic infection is characterized by low or undetectable cellular immune responses against HCV antigens. Some studies have suggested that HCV proteins manipulate the immune system by suppressing the specific antiviral T-cell immunity. We have previously reported that the expression of HCV core and E1 proteins (CE1) in dendritic cells (DC) impairs their ability to prime T cells in vitro. We show here that immunization of mice with immature DC transduced with an adenovirus encoding HCV core and E1 antigens (AdCE1) induced lower CD4(+)- and CD8(+)-T-cell responses than immunization with DC transduced with an adenovirus encoding NS3 (AdNS3). However, no differences in the strength of the immune response were detected when animals were immunized with mature DC subsequently transduced with AdCE1 or AdNS3. According to these findings, we observed that the expression of CE1 in DC inhibited the maturation caused by tumor necrosis factor alpha or CD40L but not that induced by lipopolysaccharide. Blockade of DC maturation by CE1 was manifested by a lower expression of maturation surface markers and was associated with a reduced ability of AdCE1-transduced DC to activate CD4(+)- and CD8(+)-T-cell responses in vivo. Our results suggest that HCV CE1 proteins modulate T-cell responses by decreasing the stimulatory ability of DC in vivo via inhibition of their physiological maturation pathways. These findings are relevant for the design of therapeutic vaccination strategies in HCV-infected patients. 相似文献
8.
Studies on the role of phospholipids in phagocytosis 总被引:17,自引:0,他引:17
9.
Oxidized phospholipids mediate occludin expression and phosphorylation in vascular endothelial cells
DeMaio L Rouhanizadeh M Reddy S Sevanian A Hwang J Hsiai TK 《American journal of physiology. Heart and circulatory physiology》2006,290(2):H674-H683
Oxidized l-alpha-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), a component of minimally modified LDL, induces production of proinflammatory cytokines and development of atherosclerotic lesions. We tested the hypothesis that OxPAPC alters expression, phosphorylation, and localization of tight junction (TJ) proteins, particularly occludin, a transmembrane TJ protein. OxPAPC reduced total occludin protein and increased occludin phosphorylation dose dependently (10-50 microg/ml) and time dependently in bovine aortic endothelial cells. OxPAPC decreased occludin mRNA and reduced the immunoreactivity of zonula occludens-1 at the cell-cell contacts. Furthermore, OxPAPC increased the diffusive flux of 10-kDa dextran in a dose-dependent manner. O2-* production by bovine aortic endothelial cells increased nearly twofold after exposure to OxPAPC. Also, enzymatic generation of O2-* by xanthine oxidase-lumazine and H2O2 by glucose oxidase-glucose increased occludin phosphorylation, implicating reactive oxygen species as modulators of the OxPAPC effects on occludin phosphorylation. Superoxide dismutase and/or catalase blocked the effects of OxPAPC on occludin protein content and phosphorylation, occludin mRNA, zonula occludens-1 immunoreactivity, and diffusive flux of 10-kDa dextran. These findings suggest that changes in TJ proteins are potential mechanisms by which OxPAPC compromises the barrier properties of the vascular endothelium. OxPAPC-induced disruption of TJs, which likely facilitates transmigration of LDL and inflammatory cells into the subendothelial layers, may be mediated by reactive oxygen species. 相似文献
10.
Hazen SL 《The Journal of biological chemistry》2008,283(23):15527-15531
11.
Harris DT 《Biochemical and biophysical research communications》2012,417(1):231-236
A variety of mechanisms have been proposed to explain how tumors evade immune destruction. This work has identified one such mechanism that determines susceptibility to immune lysis; membrane phospholipid composition altered susceptibility to antibody plus complement (Ab+C)-mediated lysis. Effects on antibody plus complement-mediated lysis were correlated with levels of major histocompatibility complex (MHC) molecules but not inherent resistance to complement damage. This cellular mechanism could be a means by which tumor cells escape immune detection and destruction. 相似文献
12.
Connor LM Ballinger CA Albrecht TB Postlethwait EM 《American journal of physiology. Lung cellular and molecular physiology》2004,286(6):L1169-L1178
The intrapulmonary distribution of inhaled ozone (O(3)) and induction of site-specific cell injury are related to complex interactions among airflow patterns, local gas-phase concentrations, and the rates of O(3) flux into, and reaction and diffusion within, the epithelial lining fluid (ELF). Recent studies demonstrated that interfacial phospholipid films appreciably inhibited NO(2) absorption. Because surface-active phospholipids are present on alveolar and airway interfaces, we investigated the effects of interfacial films on O(3)-reactive absorption and acute cell injury. Compressed films of dipalmitoyl-glycero-3-phosphocholine (DPPC) and rat lung lavage lipids significantly reduced O(3)-reactive absorption by ascorbic acid, reduced glutathione, and uric acid. Conversely, unsaturated phosphatidylcholine films did not inhibit O(3) absorption. We evaluated O(3)-mediated cell injury using a human lung fibroblast cell culture system, an intermittent tilting exposure regimen to produce a thin covering layer, and nuclear fluorochrome permeability. Exposure produced negligible injury in cells covered with MEM. However, addition of AH(2) produced appreciable (<50%) cell injury. Film spreading of DPPC monolayers necessitated the use of untilted regimens. Induction of acute cell injury in untilted cultures required both AH(2) plus very high O(3) concentrations. Addition of DPPC films significantly reduced cell injury. We conclude that acute cell injury likely results from O(3) reaction with ELF substrates. Furthermore, interfacial films of surface-active, saturated phospholipids reduce the local dose of O(3)-derived reaction products. Finally, because O(3) local dose and tissue damage likely correlate, we propose that interfacial phospholipids may modulate intrapulmonary distribution of inhaled O(3) and the extent of site-specific cell injury. 相似文献
13.
14.
Vetrugno V Cardinale A Filesi I Mattei S Sy MS Pocchiari M Biocca S 《Biochemical and biophysical research communications》2005,338(4):1791-1797
Transmissible spongiform encephalopathy or prion diseases are fatal neurodegenerative disorders characterized by the conversion of the cellular prion protein (PrPC) into the infectious scrapie isoform (PrPSc). We have recently demonstrated that anti-prion intrabodies targeted to the lumen of the endoplasmic reticulum provide a simple and effective means to inhibit the transport of PrPC to the cell surface. Here, we report that they completely block the traffic of mature full-length PrPC molecules, impair prion lysosomal degradation, and interfere with the early phase of scrapie formation. Since anti-prion intrabodies efficiently block PrPSc accumulation in vitro, we investigated whether they could also antagonize scrapie infectivity in vivo. We found that mice intracerebrally injected with KDEL-8H4-NGF-differentiated PC12 cells infected with scrapie neither develop scrapie clinical signs nor brain damage. Furthermore, no protease-resistant PrPSc is detectable in brains of inoculated animals. These results indicate that anti-prion intrabody strategy may be effective against prion infection. 相似文献
15.
Continuing our research on Mycobacteria kansasii phagocytosis inhibition, we have examined in that context three series of peptides derived from the RGDVY and GRGD sequences. It was found that the levels of the inhibitory activity depend on the amino acid composition as well as on the particular peptide sequence. Distinct inhibitory activity was found in the case of thymopentin (RKDVY), the active fragment of thymopoietin. In this case the Mycobacterium phagocytosis inhibition should be combined with general immunostimulatory activity of RKDVY peptide. Our examination of a series of GRGDV analogs with a successively prolonged oligo-Gly linker inserted into the peptide chain showed that the distance between the Arg and Asp residues required for such an activity should be about 9A. 相似文献
16.
Blüml S Kirchberger S Bochkov VN Krönke G Stuhlmeier K Majdic O Zlabinger GJ Knapp W Binder BR Stöckl J Leitinger N 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(1):501-508
Maturation of dendritic cells (DCs) induced by pathogen-derived signals via TLRs is a crucial step in the initiation of an adaptive immune response and therefore has to be well controlled. In this study, we demonstrate that oxidized phospholipids (ox-PLs), which are generated during infections, apoptosis, and tissue damage, interfere with DC activation, preventing their maturation. ox-PLs blocked TLR-3- and TLR-4-mediated induction of the costimulatory molecules CD40, CD80, CD83, and CD86, the cytokines IL-12 and TNF, as well as lymphocyte stimulatory capacity. CD40 and TLR-2-mediated cytokine production was also inhibited, whereas up-regulation of costimulatory molecules via these receptors was not affected by ox-PLs. Thus, formation of ox-PLs during the course of an inflammatory response may represent a negative-feedback loop preventing excessive and sustained immune reactions through regulating DC maturation. 相似文献
17.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(5):767-772
AbstractAutotaxin is an extracellular, two zinc-centered enzyme that hydrolyzes lysophosphatidyl choline to lysophosphatidic acid, involved in various cancerous processes, e.g. migration, proliferation and tumor progression. We examined the autotaxin inhibitory properties of extended structure carbamoylphosphonates (CPOs) PhOC6H4SO2NH(CH2)nNHCOPO3H2, with increasing lengths of methylene chains, (CH2)n, n?=?4–8. Carbamoylphosphonates having n?=?6, 7, 8 inhibited autotaxin in vitro with IC50?≈?1.5?µM. Using an imaging probe we demonstrated that compound n?=?6 inhibits recombinant autotaxin activity in vitro and in vivo, following oral CPO administration. Additionally, daily oral administration of compound n?=?7 inhibited over 90% of lung metastases in a murine melanoma metastasis model. Both the carbamoylphosphonates and the enzymes reside and interact in the extracellular space expecting minimal toxic side effects, and presenting a novel approach for inhibiting tumor proliferation and metastasis dissemination. 相似文献
18.
A family of lipopolysaccharide binding proteins involved in responses to gram-negative sepsis 总被引:26,自引:0,他引:26
The lipopolysaccharides (LPS) of Gram-negative bacteria initiate potentially fatal processes in many host organisms. Recently published amino acid sequence data suggest that there is a family of LPS binding proteins that may participate in the host response to Gram-negative bacteremia. The first two members of the family to be identified are an LPS binding protein present in serum after an acute phase response in humans, mice, rabbits, and rats and a bactericidal/permeability increasing protein present in the primary granules of human and rabbit neutrophils. LPS binding protein and bactericidal/permeability increasing protein share an ability to bind to LPS, have homologous NH2-terminal amino acid sequences, and are immunologically cross-reactive. Nevertheless, these two molecules differ in their effects on LPS and Gram-negative bacteria, in their sites of biosynthesis, and localization in vivo. 相似文献
19.
Samhan-Arias AK Ji J Demidova OM Sparvero LJ Feng W Tyurin V Tyurina YY Epperly MW Shvedova AA Greenberger JS Bayır H Kagan VE Amoscato AA 《Biochimica et biophysica acta》2012,1818(10):2413-2423
Oxidized phospholipid species are important, biologically relevant, lipid signaling molecules that usually exist in low abundance in biological tissues. Along with their inherent stability issues, these oxidized lipids present themselves as a challenge in their detection and identification. Often times, oxidized lipid species can co-chromatograph with non-oxidized species making the detection of the former extremely difficult, even with the use of mass spectrometry. In this study, a normal-phase and reverse-phase two dimensional high performance liquid chromatography (HPLC)-mass spectrometric system was applied to separate oxidized phospholipids from their non-oxidized counterparts, allowing unambiguous detection in a total lipid extract. We have utilized bovine heart cardiolipin as well as commercially available tetralinoleoyl cardiolipin oxidized with cytochrome c (cyt c) and hydrogen peroxide as well as with lipoxygenase to test the separation power of the system. Our findings indicate that oxidized species of not only cardiolipin, but other phospholipid species, can be effectively separated from their non-oxidized counterparts in this two dimensional system. We utilized three types of biological tissues and oxidative insults, namely rotenone treatment of lymphocytes to induce mitochondrial damage and cell death, pulmonary inhalation exposure to single walled carbon nanotubes, as well as total body irradiation, in order to identify cardiolipin oxidation products, critical to the cell damage/cell death pathways in these tissues following cellular stress/injury. Our results indicate that selective cardiolipin (CL) oxidation is a result of a non-random free radical process. In addition, we assessed the ability of the system to identify CL oxidation products in the brain, a tissue known for its extreme complexity and diversity of CL species. The ability of the two dimensional HPLC-mass spectrometric system to detect and characterize oxidized lipid products will allow new studies to be formulated to probe the answers to biologically important questions with regard to oxidative lipidomics and cellular insult. This article is part of a Special Issue entitled: Oxidized phospholipids - their properties and interactions with proteins. 相似文献
20.
Wilhelm J Skoumalová A Vytásek R Fisárková B Hitka P Vajner L 《Physiological research / Academia Scientiarum Bohemoslovaca》2005,54(5):533-539
Phagocytosis is associated with respiratory burst producing reactive oxygen and nitrogen species. Several studies imply that erythrocytes can inhibit the respiratory burst during erythrophagocytosis. In this work we studied the mechanisms of this effect using control and in vitro peroxidized erythrocyte membranes. We demonstrated that autofluorescence of peroxidation products can be used for visualization of phagocytozed membranes by fluorescence microscopy. We also found that respiratory burst induced by a phorbol ester was inhibited by control membranes (5 mg/ml) to 63 % (P < 0.001), and to 40 % by peroxidized membranes (P < 0.001). We proved that this effect is not caused by the direct interaction of membranes with free radicals or by the interference with luminol chemiluminescence used for the detection of respiratory burst. There are indications of the inhibitory effects of iron ions and free radical products. Macrophages containing ingested erythrocyte membranes do not contain protein-bound nitrotyrosine. These observations imply a specific mechanism of erythrocyte phagocytosis. 相似文献