首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eukaryotic DNA topoisomerase I introduces transient single-stranded breaks on double-stranded DNA and spontaneously breaks down single-stranded DNA. The cleavage sites on both single and double-stranded SV40 DNA have been determined by DNA sequencing. Consistent with other reports, the eukaryotic enzymes, in contrast to prokaryotic type I topoisomerases, links to the 3'-end of the cleaved DNA and generates a free 5'-hydroxyl end on the other half of the broken DNA strand. Both human and calf enzymes cleave SV40 DNA at the identical and specific sites. From 827 nucleotides sequenced, 68 cleavage sites were mapped. The majority of the cleavage sites were present on both double and single-stranded DNA at exactly the same nucleotide positions, suggesting that the DNA sequence is essential for enzyme recognition. By analyzing all the cleavage sequences, certain nucleotides are found to be less favored at the cleavage sites. There is a high probability to exclude G from positions -4, -2, -1 and +1, T from position -3, and A from position -1. These five positions (-4 to +1 oriented in the 5' to 3' direction) around the cleavage sites must interact intimately with topo I and thus are essential for enzyme recognition. One topo I cleavage site which shows atypical cleavage sequence maps in the middle of a palindromic sequence near the origin of SV40 DNA replication. It occurs only on single-stranded SV40 DNA, suggesting that the DNA hairpin can alter the cleavage specificity. The strongest cleavage site maps near the origin of SV40 DNA replication at nucleotide 31-32 and has a pentanucleotide sequence of 5'-TGACT-3'.  相似文献   

3.
4.
We have assessed the ability of nucleosomes to influence the formation of mammalian topoisomerase II-DNA complexes by mapping the sites of cleavage induced by four unrelated topoisomerase II inhibitors in naked versus nucleosome-reconstituted SV40 DNA. DNA fragments were reconstituted with histone octamers from HeLa cells by the histone exchange method. Nucleosome positions were determined by comparing micrococcal nuclease cleavage patterns of nucleosome-reconstituted and naked DNA. Three types of DNA regions were defined: 1) regions with fixed nucleosome positioning; 2) regions lacking regular nucleosome phasing; and 3) a region around the replication origin (from position 5100 to 600) with no detectable nucleosomes. Topoisomerase II cleavage sites were suppressed in nucleosomes and persisted or were enhanced in linker DNA and in the nucleosome-free region around the replication origin. Incubation of reconstituted chromatin with topoisomerase II protected nucleosome-free regions from micrococcal nuclease cleavage without changing the overall micrococcal nuclease cleavage pattern. Thus, the present results indicate that topoisomerase II binds preferentially to nucleosome-free DNA and that the presence of nucleosomes at preferred DNA sequences influences drug-induced DNA breaks by topoisomerase II inhibitors.  相似文献   

5.
In our previous work we have shown by comparison of experimental and computational data that the positions of the histone octamers bound to the DNA molecule appear to be completely sequence-dependent. This provides a convenient and quick method for locating the nucleosomes along the DNA molecule, as soon as the nucleotide sequence is known. Using this computational approach, the complete nucleosomal map of the SV40 minichromosome has been constructed. The map consists of 25 nucleosomes, with their coordinates (centers) being specified with high accuracy. The map is found to be in remarkable agreement with available experimental data.  相似文献   

6.
Nucleotide sequence-directed mapping of the nucleosomes of SV40 chromatin   总被引:3,自引:0,他引:3  
In our previous work we have shown by comparison of experimental and computational data that the positions of the histone octamers bound to the DNA molecule appear to be completely sequence-dependent. This provides a convenient and quick method for locating the nucleosomes along the DNA molecule, as soon as the nucleotide sequence is known. Using this computational approach, the complete nucleosomal map of the SV40 minichromosome has been constructed. The map consists of 25 nucleosomes, with their coordinates (centers) being specified with high accuracy. The map is found to be in remarkable agreement with available experimental data.  相似文献   

7.
Camptothecin (CPT) is a specific topoisomerase I (top1) poison which traps top1 cleavable complexes; e.g. top1-linked DNA single-strand breaks with 5'-hydroxyl and 3'-top1 linked termini. CPT is also a potent anticancer agent and several of its derivatives have recently shown activity in the chemotherapy of solid tumors. Our aim was to apply the ligation-mediated polymerase chain reaction (LM-PCR) method to DNA extracted from CPT-treated cells in order to: (i) evaluate LM-PCR as a sensitive technique to detect in vivo CPT-induced cleavable complexes; (ii) investigate the frequency and distribution of CPT-induced DNA damage in vivo ; and (iii) compare the distribution and intensity of cleavage sites in vivo and in vitro. This report describes a protocol allowing the sequencing of top1-mediated DNA strand breaks induced by CPT in the coding strand of the 18S rRNA gene of human colon carcinoma cells. CPT or its clinical derivatives, topotecan, CPT-11, SN-38, and 9-aminocamptothecin differed in their potency and exhibited differences in their DNA cleavage pattern, which is consistent with our previous in vitro studies [Tanizawa et al . (1995) Biochemistry , 43, 7200-7206]. CPT-induced DNA cleavages induced in the presence of purified top1 were induced at the same sites in the human 18S rDNA. However, the relative intensity of the cleavages were different in vivo and in vitro. Because mammalian cells contain approximately 300 copies of the rDNA gene per genome, rDNA could be used to monitor CPT-induced DNA cleavage in different cell lines and possibly in tumor samples.  相似文献   

8.
Novel partitioning of DNA cleavage sites for Drosophila topoisomerase II   总被引:24,自引:0,他引:24  
A Udvardy  P Schedl  M Sander  T S Hsieh 《Cell》1985,40(4):933-941
We have examined the long-range distribution of double-stranded DNA cleavage sites for Drosophila melanogaster topoisomerase II. These studies reveal a novel partitioning of preferred topoisomerase II cleavage sites. In the eukaryotic DNAs examined, major cleavage sites were typically found in nontranscribed spacer segments and close to the 5' and 3' boundaries of genes. In contrast, there were few if any prominent cleavage sites within genes. In addition, most of the major topoisomerase II cleavage sites closely corresponded to naked DNA hypersensitive sites for the prokaryotic enzyme, micrococcal nuclease.  相似文献   

9.
Several antitumor drugs including DNA intercalative and non intercalative agents induce in vitro and in vivo double-stranded DNA breaks by stabilization of a topoisomerase II-DNA complex. In order to locate cleavage sites in an actively transcribed oncogene, N417 cells, originating from a human small cell lung carcinoma and containing 45-50 copies of c-myc oncogene, were treated with mAMSA, 9 hydroxyellipticine and VM 26. The presence of DNA lesions in c-myc was investigated by Southern blot hybridization with a human c-myc probe. In addition to normal bands, DNA patterns of drug treated-cells revealed the presence of new bands most likely corresponding to topoisomerase II-mediated cleavage as these bands were not found in untreated control DNA and in DNA treated with oAMSA, a biologically inactive stereoisomer of mAMSA. Major cleavage sites induced by drugs in the N417 cell c-myc locus were located in the 5' end of the c-myc exon 1 closely to some DNAse I hypersensitive sites which are assumed to reflect an activity of the gene. Therefore our data suggest that TopoII-mediated drug activity correlates with gene activity.  相似文献   

10.
Complexes between simian virus 40 DNA and topoisomerase I (topo I) were isolated from infected cells treated with camptothecin. The topo I break sites were precisely mapped by primer extension from defined oligonucleotides. Of the 56 sites, 40 conform to the in vitro consensus sequence previously determined for topo I. The remaining 16 sites have an unknown origin and were detectable even in the absence of camptothecin. Only 11% of the potential break sites were actually broken in vivo. In the regions mapped, the pattern of break sites was asymmetric. Most notable are the clustering of sites near the terminus for DNA replication and the confinement of sites to the strand that is the template for discontinuous DNA synthesis. These asymmetries could reflect the role of topo I in simian virus 40 DNA replication and suggest that topo I action is coordinated spatially with that of the replication complex.  相似文献   

11.
The distributions of DNA cleavage sites induced by topoisomerase II in the presence or absence of specific drugs were mapped in the simian virus 40 genome. The drugs studied were 5-iminodaunorubicin, amsacrine (m-AMSA), teniposide (VM-26) and 2-methyl-9-hydroxyellipticinium; each produced a distinctive pattern of enhanced cleavage. Consistently intense cleavage, both in the presence and in the absence of drugs, occurred in the nuclear matrix-associated region. Since topoisomerase II is a major constituent of the nuclear matrix, and cleavage complexes include a covalent link between topoisomerase II and DNA, the findings suggest that topoisomerase II may function to attach DNA to the nuclear matrix. Cleavage usually occurred on both DNA strands with the expected four base-pair 5' stagger, and strong sites tended to occur within A/T runs such as have been associated with binding to the nuclear scaffold. Intense cleavage was present also in the replication termination region, but was absent from the vicinity of the replication origin. Cleavage intensities were found to change with time in a manner that depended both on the site and on the drug, suggesting that topoisomerase II can move along the DNA from a kinetically preferred site to a thermodynamically preferred site.  相似文献   

12.
A Richter  J Ruff 《Biochemistry》1991,30(40):9741-9748
The intracellular substrate for eukaryotic DNA topoisomerases is chromatin rather than protein-free DNA. Yet, little is known about the action of topoisomerases on chromatin-associated DNA. We have analyzed to what extent the organization of DNA in chromatin influences the accessibility of DNA molecules for topoisomerase I cleavage in vitro. Using potassium dodecyl sulfate precipitation (Trask et al., 1984), we found that DNA in chromatin is cleaved by the enzyme with somewhat reduced efficiency compared to protein-free DNA. Furthermore, using native SV40 chromatin and mononucleosomes assembled in vitro, we show that DNA bound to histone octamer complexes is cleaved by topoisomerase I and that the cleavage sites as well as their overall distribution are identical in histone-bound and in protein-free DNA molecules.  相似文献   

13.
DNA topoisomerase II modulates DNA topology by relieving supercoil stress and by unknotting or decatenating entangled DNA. During its reaction cycle, the enzyme creates a transient double-strand break in one DNA segment, the G-DNA. This break serves as a gate through which another DNA segment is transported. Defined topoisomerase II cleavage sites in genomic and plasmid DNA have been previously mapped. To dissect the G-DNA recognition mechanism, we studied the affinity and reactivity of a series of DNA duplexes of varied sequence under conditions that only allow G-DNA to bind. These DNA duplexes could be cleaved to varying extents ranging from undetectable (<0.5%) to 80%. The sequence that defines a cleavage site resides within the central 20bp of the duplex. The DNA affinity does not correlate with the ability of the enzyme to cleave DNA, suggesting that the binding step does not contribute significantly to the selection mechanism. Kinetic experiments show that the selectivity interactions are formed before rather than subsequent to cleavage. Presumably the binding energy of the cognate interactions is used to promote a conformational change that brings the enzyme into a cleavage competent state. The ability to modulate the extent of DNA cleavage by varying the DNA sequence may be valuable for future structural and mechanistic studies that aim to determine topoisomerase structures with DNA bound in pre- and post-cleavage states and to understand the conformational changes associated with DNA binding and cleavage.  相似文献   

14.
15.
SV40 DNA FO I is randomly cleaved by S1 nuclease both at moderate (50 mM) and higher salt concentrations (250 mM NaC1). Full length linear S1 cleavage products of SV40 DNA when digested with various restriction endonucleases revealed fragments that were electrophoretically indistinguishable from the products found after digestion of superhelical SV40 DNA FO I with the corresponding enzyme. Concordingly, when the linear S1 generated duplexes were melted and renatured, circular duplexes were formed in addition to complex larger structures. This indicated that cleavage must have occurred at different sites. The double-strand-cleaving activity present in S1 nuclease preparations requires circular DNA as a substrate, as linear SV40 DNA is not cleaved. With regard to these properties S1 nuclease resembles some of the complex type I restriction nucleases from Escherichia coli which also cleave SV40 DNA only once, and, completely at random.  相似文献   

16.
We have examined the influence of VM26 (teniposide), a specific inhibitor of mammalian type II DNA topoisomerase, on the replication of SV40 minichromosomes in vitro. The replication system we used consists of replicative intermediate SV40 chromatin as substrate which is converted to mature SV40 chromatin in the presence of ATP, deoxynucleotides and a protein extract from uninfected cells. The addition of 100 microM VM26 to this system reduces DNA synthesis to 70 to 80 percent of the control and leads to an accumulation of 'late replicative intermediates'. The VM26 induced block of replication was not released by the addition of large quantities of type I DNA topoisomerase. We conclude, that type II DNA topoisomerase is essential for the final replication steps leading from late Cairns structures of replicative intermediates to monomeric minichromosomes. It appears that type I DNA topoisomerase can function as a swivelase during most of the replicative elongation phase, but must later be replaced by type II DNA topoisomerase.  相似文献   

17.
F Bourre  G Renault    A Sarasin 《Nucleic acids research》1987,15(21):8861-8875
Ultraviolet light at 254 nm induces various kinds of DNA damage. We have located and quantified the pyrimidine (6-4) pyrimidone photoproducts along three hundred and forty two nucleotides of SV40 DNA. The level of photoproduct induction varies greatly according to the position on the DNA, but unlike what happens with pyrimidine dimers, the very adjacent nucleotides do not play a major role in the frequency of formation. A new alkali-sensitive site has been found on the ACA sequence after UV irradiation. This complex lesion is insensitive to the T4 endonuclease V and the E. coli photolyase, and may be involved with mutagenesis.  相似文献   

18.
The site specificities of the type 1 DNA topoisomerases (topo 1) from rat liver and wheat germ were investigated. The nucleotide sequence at break sites on duplex SV40 DNA were determined for 245 wheat germ topo 1 sites and 223 rat liver topo 1 sites over a region of 1781 nucleotides. The enzymes from the two different sources show similar, but not identical patterns of DNA strand breakage. The sites occur frequently, but are not broken with equal probabilities. Major sites of breakage occur on the average every one to two turns of the helix, thus if sites of breakage accurately represent topo 1 sites of activity, the DNA sequence alone would appear to place few limits on the access of the enzyme to DNA. Sequences around the strongest sites for both enzymes show a bias in base composition for the four nucleotides immediately 5' to the break site (-4 to -1 positions), but no bias is observed 3' to the site of breakage. Consensus sequences for both enzymes were determined. Variations from the consensus sequence appear to affect the two enzymes differently and may account for the differences observed in the specificity of breakage.  相似文献   

19.
The cutting sites specificity of topoisomerase II from porcine spleen were determined by a modified Sanger's DNA sequencing method. The topoisomerase II prefers to cut DNA at the 3' side of A and leave 5' protruding end with two staggering bases. Through the free energy analysis for DNA duplex, we also found that the topoisomerase II seemed cut DNA preferably at energetically unstable regions. So it is concluded that the specific DNA cutting by porcine spleen topoisomerase II has two structural recognition factors: one is to localize around the energetically unstable region and another is to act at the 3' side of A base.  相似文献   

20.
Simian virus 40 (SV40) nucleoprotein complexes were studied with the electron microscope. Depending on the isolation procedure, SV40 chromatin has two different conformations: complexes isolated in the presence of 0.15 M NaCl appeared as very compact globular structures, while those isolated in the presence of 0.6 M NaCl had the typical 'beads-on-a-string' appearance of the primary nucleofilament. Concomitant with this structural change was a variation in the histone pattern and sedimentation behaviour of the complexes: with NaCl at 0.15 mol 1(-1) the isolated complexes contained both the nucleosomal histones and histone H1, and sedimented in sucrose gradients at 70S. Increasing the ionic strength to 0.6 M NaCl resulted in the removal of histone H1 from the complexes and in a decrease of the sedimentation coefficient to 40S. DNA relaxing enzyme is associated with the SV40 nucleoprotein complexes. The numbers of superhelical turns in DNA from compact and open types of complexes were found to be the same. Therefore the transition from the condensed to the open structure of viral chromatin does not require a change in the topological winding number of its DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号