首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transglucosylation activities of spinach α-glucosidase I and IV, which have different substrate specificity for hydrolyzing activity, were investigated. In a maltose mixture, α-glucosidase I, which has high activity toward not only maltooligosaccharides but also soluble starch and can hydrolyze isomaltose, produced maltotriose, isomaltose, and panose, and α-glucosidase IV, which has high activity toward maltooligosaccharides but faint activity toward soluble starch and isomaltose, produced maltotriose, kojibiose, and 2,4-di-α-D-glucosyl-glucose. Transglucosylation to sucrose by α-glucosidase I and IV resulted in the production of theanderose and erlose, respectively, showing that spinach α-glucosidase I and IV are useful to synthesize the α-1,6-glucosylated and α-1,2- and 1,4-glucosylated products, respectively.  相似文献   

2.
The chimeric alpha-glucosidases of Mucor javanicus and Aspergillus oryzae, which has high activity toward not only maltooligosaccharides but also soluble starch and has high activity toward maltooligosaccharides but faint activity toward soluble starch, respectively, were constructed by shuffling the C-terminal regions where low homology is observed between the two enzymes. The chimera genes were expressed in Pichia pastoris to produce and secrete the enzymes that have predicted molecular masses in the culture medium. The two chimeric M. javanicus alpha-glucosidases, of which the N- and C-terminal regions are substituted for those of A. oryzae, respectively, decreased in soluble starch-hydrolyzing activity, however, increased in maltose-hydrolyzing activity by 2.1 and 4.9 times higher than that of the native form of M. javanicus alpha-glucosidase, respectively. The chimeric enzymes changed on the V(max) values for maltose significantly, whereas the K(m) values were similar to that of the native enzyme.  相似文献   

3.
A fungus producing an alpha-glucosidase that synthesizes alpha-1,3- and alpha-1,2-linked glucooligosaccharides by transglucosylation was isolated and identified as Paecilomyces lilacinus. The cell-bound enzyme responsible for the synthesis was extracted by suspension of mycelia with 0.1 M phosphate buffer (pH 8.0), and the extract was purified. The molecular weight and the isoelectric point were estimated to be 54,000 and 9.1, respectively. The enzyme was most active at pH 5.0 and 65 degres C. The enzyme hydrolyzed maltose, nigerose, and kojibiose. The enzyme also hydrolyzed soluble starch and amylose with the rate toward maltose. p-Nitro-phenyl alpha-glucoside and isomaltose were not good substrates. The enzyme had high transglucosylation activity to synthesize oligosaccharides containing alpha-1,3- and alpha-1,2-linkages. At an early stage of the reaction, considerable maltotriose, 4-O-alpha-nigerosyl-D-glucose, and 4-O-alpha-kojibiosyl-D-glucose were synthesized. Afterwards, nigerose and kojibiose were accumulated gradually with glucose as an acceptor.  相似文献   

4.
Bacillus stearothermophilus alpha-1,4-glucosidase (BS) is highly specific for alpha-1,4-glucosidic bonds of maltose, maltooligosaccharides and alpha-glucans. Bacillus thermoglucosdasius oligo-1,6-glucosidase (BT) can specifically hydrolyse alpha-1,6 bonds of isomaltose, isomaltooligosaccharides and alpha-limit dextrin. The two enzymes have high homology in primary structure and belong to glycoside hydrolase family 13, which contain four conservative regions (I, II, III and IV). The two enzymes are suggested to be very close in structure, even though there are strict differences in their substrate specificities. Molecular determinants of substrate recognition in these two enzymes were analysed by site-directed mutagenesis. Twenty BT-based mutants and three BS-based mutants were constructed and characterized. Double substitutions in BT of Val200 -->Ala in region II and Pro258 -->Asn in region III caused an appearance of maltase activity compared with BS, and a large reduction of isomaltase activity. The values of k(0)/K(m) (s(-1). mM(-1)) of the BT-mutant for maltose and isomaltose were 69.0 and 15.4, respectively. We conclude that the Val/Ala200 and Pro/Asn258 residues in the alpha-glucosidases may be largely responsible for substrate recognition, although the regions I and IV also exert a slight influence. Additionally, BT V200A and V200A/P258N possessed high hydrolase activity towards sucrose.  相似文献   

5.
The chimeric α-glucosidases of Mucor javanicus and Aspergillus oryzae, which has high activity toward not only maltooligosaccharides but also soluble starch and has high activity toward maltooligosaccharides but faint activity toward soluble starch, respectively, were constructed by shuffling the C-terminal regions where low homology is observed between the two enzymes. The chimera genes were expressed in Pichia pastoris to produce and secrete the enzymes that have predicted molecular masses in the culture medium. The two chimeric M. javanicus α-glucosidases, of which the N- and C-terminal regions are substituted for those of A. oryzae, respectively, decreased in soluble starch-hydrolyzing activity, however, increased in maltose-hydrolyzing activity by 2.1 and 4.9 times higher than that of the native form of M. javanicus α-glucosidase, respectively. The chimeric enzymes changed on the Vmax values for maltose significantly, whereas the Km values were similar to that of the native enzyme.  相似文献   

6.
A starch-hydrolyzing enzyme from Schwanniomyces occidentalis has been reported to be a novel glucoamylase, but there is no conclusive proof that it is glucoamylase. An enzyme having the hydrolytic activity toward soluble starch was purified from a strain of S. occidentalis. The enzyme showed high catalytic efficiency (k(cat)/K(m)) for maltooligosaccharides, compared with that for soluble starch. The product anomer was alpha-glucose, differing from glucoamylase as a beta-glucose producing enzyme. These findings are striking characteristics of alpha-glucosidase. The DNA encoding the enzyme was cloned and sequenced. The primary structure deduced from the nucleotide sequence was highly similar to mold, plant, and mammalian alpha-glucosidases of alpha-glucosidase family II and other glucoside hydrolase family 31 enzymes, and the two regions involved in the catalytic reaction of alpha-glucosidases were conserved. These were no similarities to the so-called glucoamylases. It was concluded that the enzyme and also S. occidentalis glucoamylase, had been already reported, were typical alpha-glucosidases, and not glucoamylase.  相似文献   

7.
Bacillus stearothermophilus was found to bind strongly to starch and related alpha-glucans at 25 degrees C but not at 55 degrees C. The binding at the lower temperature could be assayed either by binding of fluorescein-labeled amylopectin to washed cell suspensions or through the reversible retention of bacteria by affinity chromatography in matrices containing immobilized starch. The bacteria exhibited amylopectin-dependent agglutination. The binding and agglutination were highest in bacteria grown on substrates containing alpha-1,4-glucosidic linkages such as maltose or dextrins. The binding affinity of cells was highest for maltohexaose, lower for maltose, and low or undetectable for glucose, isomaltose, cellobiose, or lactose. The reduced binding at the higher temperature was due to the rapid breakdown of the alpha-glucosides. The bacteria exhibited an extracellular alpha-amylase activity as well as a cell-associated alpha-glucosidase with high activity at 55 degrees C but undetectable activity at 25 degrees C. The inducibility, specificity, and protease sensitivity of the thermophilic alpha-glucosidase in whole cells were similar to those of the binding activity assayed at the lower temperature. Further evidence linking the binding and alpha-glucosidase activities came from a mutant, selected through affinity chromatography, which was reduced in starch binding at room temperature and also reduced in membrane-associated alpha-glucosidase activity at 55 degrees C. These results suggest a novel survival mechanism whereby a bacterium attaches to a macromolecular substrate under nonoptimal growth conditions for possible utilization upon a shift to more favorable conditions.  相似文献   

8.
Bacillus circulans T-3040 produces cycloisomaltooligosaccharide glucanotransferase (CITase) and cycloisomaltooligosaccharides (cyclodextrans, CIs) when it is grown in media containing dextran as the carbon source. To investigate the effects of carbon sources on CITase activity, B. circulans T-3040 was cultured with glucose; sucrose; a mixture of isomaltose, isomaltotriose, and panose (IMOs); a mixture of maltohexaose and maltoheptaose (G67); dextrin (average degree of polymerization?=?36); dextran 40; and soluble starch. In addition to dextran 40, CIs were produced when the T-3040 strain was grown in media containing soluble starch as the sole carbon source. CITase production was induced by dextran 40, IMOs, and soluble starch but not by G67 or dextrin, which suggests that α-1,6 glucosidic linkages are required for CITase induction. Although CITase was induced by IMOs, no CIs were produced in the culture. CI-producing activity in the presence of soluble starch as the substrate (SS-CITase activity) was observed only in cultures containing dextran 40 or soluble starch. The production of CITase was significantly unaffected by glucose addition, but SS-CITase activity almost completely disappeared after glucose addition. A 135-kDa protein was found to contribute to CI formation from starch in the presence of CITase. This protein had a disproportionation activity with maltooligosaccharides, and its induction and inhibition system may be different from those of CITase.  相似文献   

9.
Two D-glucosyltransferases are produced by Streptococcus sobrinus C211. One (GTF-S) catalyzes the conversion of sucrose into soluble alpha-(1----6)-linked alpha-(1----3)-branched D-glucans, and the other (GTF-I), of sucrose into alpha-(1----3)-linked alpha-(1----6)-branched D-glucans. These enzymes were studied by using maltose, isomaltose, and nigerose as inhibitors. Maltose and isomaltose were found to be competitive inhibitors of GTF-S, whereas nigerose has no effect on GTF-S activity. The Ki values for maltose and isomaltose were determined to be 11 and 15mM, respectively. Maltose, isomaltose, and nigerose competitively inhibit GTF-I. The Ki values for these inhibitors were found to be approximately 0.8, 2.5, and 15mM, respectively. The inhibitory properties of each disaccharide are interpreted in terms of conformational comparisons with sucrose.  相似文献   

10.
An α-glucosidase was purified from sweet corn seeds by fractionation with ammonium sulfate, chromatographies on CM-Sepharose and Sepharose 4B, and gel filtrations on Sephadex G-100. The enzyme was homogeneous in disc electrophoretic analysis. The molecular weight was estimated to be about 9.6 × 104 by SDS-disc electrophoresis.

The enzyme showed high activities toward maltose, nigerose, phenyl-α-maltoside, and maltooligosaccharides. The ratios of maximum velocity for maltose, nigerose, kojibiose, isomaltose, phenyl-α-glucoside, phenyl-α-maltoside, panose, turanose, and soluble starch were estimated to be 100 : 78 : 17 : 11 : 28 : 100 : 31 : 3.4 : 126, and the Km values for these substrates, 1.5 mM, 1.4 mM, 0.48 mM, 14 mM, 4.2 mM, 1.1 mM, 5.0 mM, 0.28 mM and 52mg/ml, respectively. The maximum velocity for soluble starch was high, but this α-glucan was not a favorable substrate because the Km value was also very high. The Vmax for maltooligosaccharides were somewhat dependent on the degree of polymerization (n). The Km values for substrates having four or more glucose units increased with the increase in n.  相似文献   

11.
Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0.08, 0.12, and 0.17 M NaCl, whereas the two peaks of the variant, with 0.01 and 0.06 M NaCl. The pH optimum and thermal denaturation at 57 degrees C were the same in all enzyme peaks of both isozymes. Rabbit antiacid alpha-glucosidase antibodies produced against the common isozyme were found to cross-react with both peaks of the variant isozyme. The two isozymes shared antigenic identity and had similar Km's with maltose as substrate. Normal substrate saturation kinetics were observed with the common isozyme when glycogen was the substrate, but the variant produced an S-shaped saturation curve indicating a phase of negative and positive cooperativity at low and high glycogen concentrations, respectively. The activity of the variant was only 8.6% and 19.2% of the common isozyme when assayed with nonsaturating and saturating concentrations of glycogen, respectively. A similar rate of hydrolysis of isomaltose by both isozymes was found indicating that the reduced catalytic activity of the variant isozyme toward glycogen is not the result of a reduced ability of this enzyme to cleave the alpha-1,6 linkages of glycogen.  相似文献   

12.
Trehalose supports the growth of Thermus thermophilus strain HB27, but the absence of obvious genes for the hydrolysis of this disaccharide in the genome led us to search for enzymes for such a purpose. We expressed a putative alpha-glucosidase gene (TTC0107), characterized the recombinant enzyme, and found that the preferred substrate was alpha,alpha-1,1-trehalose, a new feature among alpha-glucosidases. The enzyme could also hydrolyze the disaccharides kojibiose and sucrose (alpha-1,2 linkage), nigerose and turanose (alpha-1,3), leucrose (alpha-1,5), isomaltose and palatinose (alpha-1,6), and maltose (alpha-1,4) to a lesser extent. Trehalose was not, however, a substrate for the highly homologous alpha-glucosidase from T. thermophilus strain GK24. The reciprocal replacement of a peptide containing eight amino acids in the alpha-glucosidases from strains HB27 (LGEHNLPP) and GK24 (EPTAYHTL) reduced the ability of the former to hydrolyze trehalose and provided trehalose-hydrolytic activity to the latter, showing that LGEHNLPP is necessary for trehalose recognition. Furthermore, disruption of the alpha-glucosidase gene significantly affected the growth of T. thermophilus HB27 in minimal medium supplemented with trehalose, isomaltose, sucrose, or palatinose, to a lesser extent with maltose, but not with cellobiose (not a substrate for the alpha-glucosidase), indicating that the alpha-glucosidase is important for the assimilation of those four disaccharides but that it is also implicated in maltose catabolism.  相似文献   

13.
黑曲霉(Aspergillus niger)突变株T-21葡萄糖淀粉酶(GAI)仅能水解多种淀粉及麦芽低聚糖生成唯一产物β-葡萄糖,其水解麦芽糖及麦芽三糖的速度分别为200和570mg葡萄糖·h~(-1)·mg~(-1).GAI水解α-1,4键的速度比水解α-1.6键快100多倍.除了马铃薯淀粉外,对其它淀粉及麦芽低聚糖几乎都能100%地水解,但不能水解环状糊精,其水解各麦芽低聚糖的最先产物都比原底物少一个葡萄糖单位,说明GAI为一外切型淀粉酶.GAI对麦芽糖、麦芽三糖、可溶性淀粉、糯米淀粉、糊精及糖原的Km值分别1.92mmol/L、0.38mmol/L、0.053%、0.045%、0.059%、及0.076%,V_(max)分别为590、1370、1270、1520、1120和1220mg葡萄糖·h~(-1)·mg~(-1).D-葡萄糖酸-δ-内酯及麦芽糖醇对此酶分别具有反竞争性抑制和混合性抑制.  相似文献   

14.
An extracellular enzyme (RMEBE) possessing alpha- (1-->4)-(1-->6)-transferring activity was purified to homogeneity from Rhodothermus marinus by combination of ammonium sulfate precipitation, Q-Sepharose ion-exchange, and Superdex- 200 gel filtration chromatographies, and preparative native polyacrylamide gel electrophoresis. The purified enzyme had an optimum pH of 6.0 and was highly thermostable with a maximal activity at 80 degrees . Its half-life was determined to be 73.7 and 16.7 min at 80 and 85 degrees , respectively. The enzyme was also halophilic and highly halotolerant up to about 2 M NaCl, with a maximal activity at 0.5M. The substrate specificity of RMEBE suggested that it possesses partial characteristics of both glucan branching enzyme and neopullulanase. RMEBE clearly produced branched glucans from amylose, with partial alpha-(1-->4)-hydrolysis of amylose and starch. At the same time, it hydrolyzed pullulan partly to panose, and exhibited alpha-(1-->4)-(1-->6)-transferase activity for small maltooligosaccharides, producing disproportionated alpha-(1-->6)-branched maltooligosaccharides. The enzyme preferred maltopentaose and maltohexaose to smaller maltooligosaccharides for production of longer branched products. Thus, the results suggest that RMEBE might be applied for production of branched oligosaccharides from small maltodextrins at high temperature or even at high salinity.  相似文献   

15.
Amylase A from Dictyoglomus thermophilum is a thermophilic enzyme and has about 40% identity with 4-alpha-glucanotransferase (GTase) from Thermococcus litoralis, and both of these enzymes belong to family 57 glycosyl hydrolase. Since the transglycosylation activity of T. litoralis GTase has been well characterized, the substrate specificity and reaction products of amylase A from D. thermophilum were examined. alpha-1,4 Glucan was produced from maltooligosaccharides, and glucoamylase-resistant molecules (cycloamyloses) were produced from longer chain amylose (average molecular mass 200 kDa). It has been reported that amylase A from D. thermophilum hydrolyzes starch, but in this study it was found that the enzyme was also able to use maltooligosaccharides and long chain amylose as substrate and has transglycosylation activity.  相似文献   

16.
A large amount of lysosomal acid hydrolases was released into the medium by Tetrahymena pyriformis strain W during growth. An extracellular lysosomal acid alpha-glucosidase has been purified 500-fold with a 41% yield to homogeneity, as judged by polyacrylamide gel electrophoresis. It was found to be a glycoprotein and to consist of a single 110,000-dalton polypeptide chain. The carbohydrate content of the alpha-glucosidase was equivalent to 2.8% of the total protein content, and the oligosaccharide moiety was composed of mannose and N-acetylglucosamine in a molar ratio of 6.7:2. The optimal pHs for hydrolysis of maltose and p-nitrophenyl-alpha-glucopyranoside, maltose, isomaltose, and glycogen were 1.1 mM, 2.5 mM, 33.0 mM, and 18.5 mg/ml, respectively. This purified enzyme appears to have alpha-1,6-glucosidase as well as alpha-1,4-glucosidase activity. Turanose has a noncompetitive inhibitory effect on the hydrolysis of maltose. The antibody raised against Tetrahymena acid alpha-glucosidase inhibited the hydrolysis of all substrates tested. These properties of Tetrahymena acid alpha-glucosidase were found to be similar to those of the human liver lysosomal alpha-glucosidase.  相似文献   

17.
Scopelophila cataractae is a rare moss that grows on copper-containing soils. S. cataractae protonema was grown on basal MS medium containing copper. A starch-degrading activity was detected in homogenates of the protonema, after successive extraction with phosphate buffer and buffer containing 3 M LiCl. Buffer-soluble extract (BS) and LiCl-soluble extract (LS) readily hydrolyzed amylopectin to liberate only glucose, which shows that alpha-glucosidase (EC 3.2.1.20) in BS and LS hydrolyzed amylopectin. The K(m) value of BS for maltose was 0.427. The K(m) value of BS for malto-oligosaccharide decreased with an increase in the molecular mass of the substrate. The value for maltohexaose was 0.106, which is about four-fold lower than that for maltose. BS was divided into two fractions of alpha-glucosidase (BS-1 and BS-2) by isoelectric focusing. The isoelectric points of these two enzymes were determined to be 4.36 (BS-1) and 5.25 (BS-2) by analytical gel electrofocusing. The two enzymes readily hydrolyzed malto-oligosaccharides. The two enzymes also hydrolyzed amylose, amylopectin and soluble starch at a rate similar to that with maltose. The two enzymes readily hydrolyzed panose to liberate glucose and maltose (1 : 1), and the K(m) value of BS for panose was similar to that for maltotriose, whereas the enzymes hydrolyzed isomaltose only weakly. With regard to substrate specificity, the two enzymes in BS are novel alpha-glucosidases. The two enzymes also hydrolyzed beta-limit dextrin, which has many alpha-1,6-glucosidic linkages near the non-reducing ends, more strongly than maltose, which shows that they do not need a debranching enzyme for starch digestion. The starch-degrading activity of BS was not inhibited by p-chloromercuribenzoic acid or alpha-amylase inhibitor. When amylopectin was treated with BS and LS in phosphate buffer, pH 6.0, glucose, but not glucose-1-phosphate, was detected, showing that the extracts did not contain phosphorylase but did contain an alpha-glucosidase. These results show that alpha-glucosidases should be capable of complete starch digestion by themselves in cells of S. cataractae.  相似文献   

18.
A bacterial strain M6, isolated from soil and identified as Arthrobacter globiformis, produced a novel nonreducing oligosaccharide. The nonreducing oligosaccharide was produced from starch using a culture supernatant of the strain as enzyme preparation. The oligosaccharide was purified as a crystal preparation after alkaline treatment and deionization of the reaction mixture. The structure of the oligosaccharide was determined by methylation analysis, mass spectrometry, and (1)H and (13)C NMR spectroscopy, and it was demonstrated that the oligosaccharide had a cyclic structure consisting of four glucose residues joined by alternate alpha-(1-->4)- and alpha-(1-->6)-linkages. The cyclic tetrasaccharide, cyclo-{-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->}, was found to be a novel oligosaccharide, and was tentatively called cyclic maltosyl-maltose (CMM). CMM was not hydrolyzed by various amylases, such as alpha-amylase, beta-amylase, glucoamylase, isoamylase, pullulanase, maltogenic alpha-amylase, and alpha-glucosidase, but hydrolyzed by isomalto-dextranase to give rise to isomaltose. This is the first report of the cyclic tetrasaccharide, which has alternate alpha-(1-->4)- and alpha-(1-->6)-glucosidic linkages.  相似文献   

19.
An acid alpha-glucosidase (EC 3.2.1.20) was purified to homogeneity from the culture medium of Tetrahymena thermophila CU 399. Its general molecular, catalytic and immunological properties were compared to those of the T. pyriformis W enzyme. The enzyme from T. thermophila was a 105-kD monomer and the N-terminus (25 amino acid residues) displayed some homology with that of T. pyriformis enzyme. The purified enzyme was most active at 56 degrees C and showed resistance to thermal inactivation. The acid alpha-glucosidase appears to have alpha-1,6-glucosidase as well as alpha-1,4-glucosidase activity. The Km values determined with p-nitrophenyl-alpha-glucopyranoside, maltose, isomaltose and glycogen were 0.7 mM, 2.5 mM, 28.5 mM and 18.5 mg/ml, respectively. The enzyme was antigenically distinct from T. pyriformis acid alpha-glucosidase.  相似文献   

20.
1. A morphological mutant of Neurospora crassa, smco 9, (R2508) that exhibits colonial morphology when grown on sucrose or on maltose, showed a partial reversal of this morphology toward that of the wild type when it was grown on potato starch or on isomaltose. 2. A common feature of both potato starch and isomaltose is the presence of alpha-1, 6 glucosidic linkages. This suggested that these morphological effects might be due to differences in alpha-1,4 glucan: alpha-1,4 glucan 6 glycosyltransferase, (EC 2.4.1.18) commonly known as "the branching enzyme". 3. The branching enzyme was purified from wild type, Neurospora crassa, and from the semicolonial mutant, R2508, both grown on sucrose or on potato starch. It has a molecular weight of 140,000 as estimated by gel filtration on a Bio Gel A 1.5 m column. This enzyme plus phosphorylase a in an unprimed reaction catalyzes the synthesis of a branched polysaccharide in vitro. 4. No branching enzyme activity was apparent in extracts of the mutant R2508, grown on potato starch until a thermolabile inhibitor was removed by fractionation on a DEAE column. 5. This inhibitor has a molecular weight greater than 100,000 as estimated on a P-100 polyacrylamide gel column. The specificity of the inhibitor is not absolute in that it inhibits glycogen synthetase in addition to the branching enzyme in Neurospora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号