首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exogenously applied brassinolide (BL) increased both gravitropic curvature and length of primary roots of Arabidopsis at low concentration (10(-10) M), whereas at higher concentration, BL further increased gravitropic curvature while it inhibited primary root growth. BRI1-GFP plants possessing a high steady-state expression level of a brassinosteroid (BR) receptor kinase rendered the plant's responses to gravity and root growth more sensitive, while BR-insensitive mutants, bri1-301 and bak1, delayed root growth and reduced their response to the gravitropic stimulus. The stimulatory effect of BL on the root gravitropic curvature was also enhanced in auxin transport mutants, aux1-7 and pin2, relative to wild-type plants, and increasing concentration of auxin attenuated BL-induced root sensitivity to gravity. Interestingly, IAA treatment to the roots of bri1-301 and bak1 plants or of plants pretreated with a BL biosynthetic inhibitor, brassinazole, increased their sensitivity to gravity, while these treatments for the BL-hypersensitive transgenic plants, BRI1-GFP and 35S-BAK1, were less effective. Expression of a CYP79B2 gene, encoding an IAA biosynthetic enzyme, was suppressed in BL-hypersensitive plant types and enhanced in BL-insensitive or -deficient plants. In conclusion, our results indicate that BL interacts negatively with IAA in the regulation of plant gravitropic response and root growth, and its regulation is achieved partly by modulating biosynthetic pathways of the counterpart hormone.  相似文献   

2.
BRI1-like receptor kinase (BRL1) was identified as an extragenic suppressor of a weak bri1 allele, bri1-5, in an activation-tagging genetic screen for novel brassinosteroid (BR) signal transduction regulators. BRL1 encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Sequence alignment revealed that BRL1 is closely related to BRI1, which is involved in BR perception. Overexpression of a BRL1 cDNA, driven by a constitutive CaMV 35S promoter, recapitulates the bri1-5 suppression phenotypes, and partially complements the phenotypes of a null bri1 allele, bri1-4. Analysis of a BR-specific feedback response gene, CPD, indicates that BRL1 functions in BR signaling. BRL1 expression pattern overlaps with, but is distinct from, that of BRI1. In addition, both the expression level and in vitro kinase autophosphorylation activity of BRL1 are significantly lower than those of BRI1. bri1-5 brl1-1 double mutant plants have enhanced developmental defects relative to bri1-5 mutant plants, revealing that BRL1 plays a partially redundant role with BRI1 in controlling Arabidopsis growth and development. These findings enhance our understanding of functional redundancy and add an additional layer of complexity to RLK-mediated BR signaling transduction in Arabidopsis.  相似文献   

3.
The ben1-1D (bri1-5 enhanced 1-1dominant) mutant was identified via an activation-tagging screen for bri1-5 extragenic modifiers. bri1-5 is a weak mutant allele of the brassinosteroid receptor gene, BRI1. Overexpression of BEN1 greatly enhances the defective phenotypes of bri1-5 plants. Removal of BEN1 by gene disruption in a Col-0 wild-type background, on the other hand, promotes the elongation of organs. Because BEN1 encodes a novel protein homologous to dihydroflavonol 4-reductase (DFR) and anthocyanidin reductase (BAN), BEN1 is probably involved in a brassinosteroid metabolic pathway. Analyses of brassinosteroid profiles demonstrated that BEN1 is indeed responsible for regulating the levels of several brassinosteroids, including typhasterol, castasterone and brassinolide. In vivo feeding and in vitro biochemical assays suggest that BEN1 is probably involved in a new mechanism to regulate brassinosteroid levels. These results provide additional insight into the regulatory mechanisms of bioactive brassinosteroids.  相似文献   

4.
BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling   总被引:48,自引:0,他引:48  
Nam KH  Li J 《Cell》2002,110(2):203-212
The Arabidopsis BAK1 (BRI1 Associated receptor Kinase 1) was identified by a yeast two-hybrid screen as a specific interactor for BRI1, a critical component of a membrane brassinosteroid (BR) receptor. In yeast, BAK1/BRI1 interaction activates their kinase activities through transphosphorylation. BAK1 and BRI1 share similar gene expression and subcellular localization patterns and physically associate with each other in plants. Overexpression of the BAK1 gene leads to a phenotype reminiscent of BRI1-overexpression transgenic plants and rescues a weak bri1 mutant. In contrast, a bak1 knockout mutation gives rise to a weak bri1-like phenotype and enhances a weak bri1 mutation. We propose that BAK1 and BRI1 function together to mediate plant steroid signaling.  相似文献   

5.
6.
7.
Thanatin(S) is an analog of thanatin, an insect antimicrobial peptide possessing strong and broad spectrum of antimicrobial activity. In order to investigate if the thanatin could be used in engineering transgenic plants for increased resistance against phytopathogens, the synthetic thanatin(S) was introduced into Arabidopsis thaliana plants. To increase the expression level of thanatin(S) in plants, the coding sequence was optimized by plant-preference codon. To avoid cellular protease degradation, signal peptide of rice Cht1 was fused to N terminal of thanatin(S) for secreting the expressed thanatin(S) into intercellular spaces. To evaluate the application value of thanatin(S) in plant disease control, the synthesized coding sequence of Cht1 signal peptide (Cht1SP)-thanatin(S) was ligated to plant gateway destination binary vectors pGWB11 (with FLAG tag). Meanwhile, in order to observe the subcellular localization of Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP, the sequences of Cht1SP-thanatin(S) and thanatin(S) were respectively linked to pGWB5 (with GFP tag). The constructs were transformed into Arabidopsis ecotype Col-0 and mutant pad4-1 via Agrobacterium-mediated transformation. The transformants with Cht1SP-thanatin(S)-FLAG fusion gene were analyzed by genomic PCR, real-time PCR, and western blots and the transgenic Arabidopsis plants introduced respectively Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP were observed by confocal microscopy. Transgenic plants expressing Cht1SP-thanatin(S)-FLAG fusion protein showed antifungal activity against Botrytis cinerea and powdery mildew, as well as antibacterial activity against Pseudomonas syringae pv. tomato. And the results from confocal observation showed that the GFP signal from Cht1SP-thanatin(S)-GFP transgenic Arabidopsis plants occurred mainly in intercellular space, while that from thanatin(S)-GFP transgenic plants was mainly detected in the cytoplasm and that from empty vector transgenic plants was distributed uniformly throughout the cell, demonstrating that Cht1 signal peptide functioned. In addition, thanatin(S) and thanatin(S)-FLAG chemically synthesized have both in vitro antimicrobial activities against P. syringae pv. tomato and B. cinerea. So, thanatin(S) is an ideal candidate AMPs for the construction of transgenic crops endowed with a broad-spectrum resistance to phytopathogens and the strategy is feasible to link a signal peptide to the target gene.  相似文献   

8.
The slender rice1 mutant (slr1) shows a constitutive gibberellin (GA) response phenotype. To investigate the mode of action of SLR1, we generated transgenic rice expressing a fusion protein consisting of SLR1 and green fluorescent protein (SLR1-GFP) and analyzed the phenotype of the transformants and the subcellular localization of GFP in vivo. SLR1-GFP worked in nuclei to repress the GA signaling pathway; its overproduction caused a dwarf phenotype. Application of GA(3) to SLR1-GFP overproducers induced GA actions such as shoot elongation, downregulation of GA 20-oxidase expression, and upregulation of SLR1 expression linked with the disappearance of the nuclear SLR1-GFP protein. We also performed domain analyses of SLR1 using transgenic plants overproducing different kinds of truncated SLR1 proteins. The analyses revealed that the SLR1 protein can be divided into four parts: a GA signal perception domain located at the N terminus, a regulatory domain for its repression activity, a dimer formation domain essential for signal perception and repression activity, and a repression domain at the C terminus. We conclude that GA signal transduction is regulated by the appearance or disappearance of the nuclear SLR1 protein, which is controlled by the upstream GA signal.  相似文献   

9.
To gain insight into the brassinosteroid (BR) signaling pathway, the expression of BR-regulated genes was analysed in the BR-signaling mutant br-insensitive 1 (bri1), and in the presence of a protein kinase inhibitor, staurosporin. BR-regulated genes were classified based on the results. This classification will perhaps prove useful in BR-signalling studies using BR-regulated genes as molecular markers.  相似文献   

10.
A nucleotide pyrophosphatase/phosphodiesterase (NPP) activity that catalyzes the hydrolytic breakdown of ADP-glucose (ADPG) has been shown to occur in the plastidial compartment of both mono- and dicotyledonous plants. To learn more about this enzyme, we purified two NPPs from rice (Oryza sativa) and barley (Hordeum vulgare) seedlings. Both enzymes are glycosylated, since they bind to concanavalin A, stain with periodic acid-Schiff reagent, and are digested by Endo-H. A complete rice NPP cDNA, designated as NPP1, was isolated, characterized, and overexpressed in transgenic plants displaying high ADPG hydrolytic activity. Databank searches revealed that NPP1 belongs to a functionally divergent group of plant nucleotide hydrolases. NPP1 contains numerous N-glycosylation sites and a cleavable hydrophobic signal sequence that does not match with the N-terminal part of the mature protein. Both immunocytochemical analyses and confocal fluorescence microscopy of rice cells expressing NPP1 fused with green fluorescent protein (GFP) revealed that NPP1-GFP occurs in the plastidial compartment. Brefeldin A treatment of NPP1-GFP-expressing cells prevented NPP1-GFP accumulation in the chloroplasts. Endo-H digestibility studies revealed that both NPP1 and NPP1-GFP in the chloroplast are glycosylated. Collectively, these data demonstrate the trafficking of glycosylated proteins from the endoplasmic reticulum-Golgi system to the chloroplast in higher plants.  相似文献   

11.
BRI1-Associated kinase1 (BAK1), a five leucine-rich-repeat containing receptor-like serine/threonine kinase, has been shown to have dual functions: mediating brassinosteroid (BR) signaling and acting in the BR-independent plant defense response. Sequence analysis has revealed that BAK1 has two homologs, BAK7 and BAK8. Because BAK8 deviates from the canonical RD kinase motif, we focused on the functional analysis of BAK7. The expression pattern and tissues in which BAK7 appeared partially overlapped with those observed for BAK1. Expression levels of BAK7 increased in the bak1 mutant. Overexpression of BAK7 rescued the bri1 mutant phenotype, indicating that BAK7 can compensate for BAK1 in BR-mediated processes, especially in the absence of BAK1. However, root and hypocotyl elongation patterns of transgenic plants overexpressing BAK1 or BAK7 appeared to be different from the patterns observed in a BRI1 overexpressor. Furthermore, the sensitivity of transgenic plants overexpressing BAK7 to brassinazole, a biosynthetic inhibitor of brassinolide (BL), did not change compared to that of wild-type plants. In addition, we generated transgenic plants expressing BAK7 RNA interference constructs and found severe growth retardation and early senescence in these lines. Taken together, these results suggest that BAK7 is a component of the BR signaling pathway, with varying degrees of genetic redundancy with BAK1, and that it affects plant growth via BL-independent pathways in vivo.  相似文献   

12.
13.
Cui F  Liu L  Zhao Q  Zhang Z  Li Q  Lin B  Wu Y  Tang S  Xie Q 《The Plant cell》2012,24(1):233-244
Plants modify their growth and development to protect themselves from detrimental conditions by triggering a variety of signaling pathways, including the activation of the ubiquitin-mediated protein degradation pathway. Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is an important aspect of the ubiquitin-proteasome system, but only a few of the active ERAD components have been reported in plants. Here, we report that the Arabidopsis thaliana ubiquitin-conjugating enzyme, UBC32, a stress-induced functional ubiquitin conjugation enzyme (E2) localized to the ER membrane, connects the ERAD process and brassinosteroid (BR)-mediated growth promotion and salt stress tolerance. In vivo data showed that UBC32 was a functional ERAD component that affected the stability of a known ERAD substrate, the barley (Hordeum vulgare) powdery mildew O (MLO) mutant MLO-12. UBC32 mutation caused the accumulation of bri1-5 and bri1-9, the mutant forms of the BR receptor, BRI1, and these mutant forms subsequently activated BR signal transduction. Further genetic and physiological data supported the contention that UBC32 plays a role in the BR-mediated salt stress response and that BR signaling is necessary for the plant to tolerate salt. Our data indicates a possible mechanism by which an ERAD component regulates the growth and stress response of plants.  相似文献   

14.
15.
Human cloned 35S-labeled NK cells were disrupted by nitrogen cavitation, and their secretory granules were obtained by filtration through 5-micron and 3-micron membrane filters followed by Percoll density-gradient centrifugation. These granule preparations, which contained 35S-labeled chondroitin sulfate A proteoglycans, were sonicated and were analyzed for carboxypeptidase activity and tryptic serine esterase activity. A carboxypeptidase activity that digested angiotensin I to des-Leu-angiotensin I, Ile-His-Pro-Phe to Ile-His-Pro and Phe, and hippuryl-L-phenylalanine to hippuric acid and Phe was detected in the granules of these NK cells. As determined by cleavage of the tetrapeptide, the pH optimum of the carboxypeptidase was 7.0. As assessed by the cleavage of N-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLTe), the granule preparations also contained a serine esterase with trypsin-like specificity that had a pH optimum of 8.5. When the isolated secretory granules were disrupted and chromatographed on columns of Sepharose CL-2B in PBS, greater than 60% of the BLTe serine esterase activity and essentially all of the carboxypeptidase activity filtered as a macromolecular complex with approximately 8% of the 35S-labeled proteoglycans. Whereas treatment with 4 M urea or nonionic detergent failed to disrupt the macromolecular complex, the serine esterase activity was dissociated from the macromolecular complex in the presence of 3 M NaCl, demonstrating an ionic interaction with the proteoglycans. No difference was observed in the disaccharide composition of the chondroitin sulfate glycosaminoglycans of the 35S-labeled proteoglycans that were complexed with the enzymes as compared to those that were not complexed. These studies indicate that the secretory granules of human NK cells contain serine esterase activity and carboxypeptidase activity, both of which have neutral pH optima, and both of which are bound to protease-resistant chondroitin sulfate proteoglycans.  相似文献   

16.
17.
18.
19.
In the tetrapyrrole biosynthetic pathway of higher plants, 5-aminolevulinic acid (ALA) is metabolized by ALA dehydratase (ALAD). Here, we isolated ALAD1 cDNA from common wheat (Triticum aestivum L.) and its diploid progenitors, and produced transgenic tobacco plants expressing the wheat ALAD1 gene. The ALAD1 genes were highly conserved among wheat relatives, and three homoeologous loci of wheat ALAD1 (TaALAD1) were equally transcribed in common wheat. A transient expression assay of a TaALAD1-GFP (green fluorescent protein) fusion protein suggested that TaALAD1 is localized in chloroplasts. Overexpression of TaALAD1 in transgenic tobacco resulted in a significant increase in ALAD activity in leaves. Moreover, the transgenic tobacco showed vigorous growth and increased survival rate on medium containing ALA at herbicidal concentrations. These results indicate that wheat ALAD1 has catalytic activity in metabolizing ALA in plastids, and that ectopic expression of TaALAD1 in transgenic plants increases their tolerance to ALA application at high concentrations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号