首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SNAT4 is a system A type amino acid transporter that primarily expresses in liver and mediates the transport of L-alanine. To determine the critical amino acid residue(s) involved in substrate transport function of SNAT4, we used hydrosulfate cross-linking MTS reagents - MMTS and MTSEA. These two reagents caused inhibition of L-alanine transport by wild-type SNAT4. There are 5 cysteine residues in SNAT4 and among them; residues Cys-232 and Cys-345 are located in the transmembrane domains. Mutation of Cys-232, but not Cys-345, inhibited transport function of SNAT4 and also rendered SNAT4 less sensitive to the cross-linking by MMTS and MTSEA. The results suggested that TMD located Cys-232 is an aqueous accessible residue, likely to be located close to the core of substrate binding site. Mutation of Cys-232 to serine similarly attenuated the transport of L-alanine substrate. Biotinylation analysis showed that C232A mutant of SNAT4 was equally capable as wild-type SNAT4 of expressing on the cell surface. Moreover, single site mutant, C232A was also found to be more resistant to MTS inhibition than double mutant C18A,C345A, further confirming the aqueous accessibility of Cys-232 residue. We also showed that mutation of Cys-232 to alanine reduced the maximal velocity (Vmax), but had minimal effect on binding affinity (Km). Together, these data suggest that residue Cys-232 at 4th transmembrane domain of SNAT4 has a major influence on substrate transport capacity, but not on substrate binding affinity.  相似文献   

2.
3.
There is an increasing appreciation that amino acids can act as signaling molecules in the regulation of cellular processes through modulation of intracellular cell signaling pathways. In culture, embryonic stem (ES) cells can be differentiated to a second, pluripotent cell population, early primitive ectoderm-like cells in response to biological activities within the conditioned medium MEDII. The amino acid l-proline has been identified as a component of MEDII required for ES cell differentiation. Here, we define the primary l-proline transporter on ES and early primitive ectoderm-like cells as sodium-coupled neutral amino acid transporter 2 (SNAT2). SNAT2 uptake of l-proline can be inhibited by the addition of millimolar concentrations of other substrates. The addition of excess amino acids was used to regulate the uptake of l-proline by ES cells, and the effect on differentiation was analyzed. The ability of SNAT2 substrates, but not other amino acids, to prevent changes in morphology, gene expression, and differentiation kinetics suggested that l-proline uptake through SNAT2 was required for ES cell differentiation. These data reveal an unexpected role for amino acid uptake and the amino acid transporter SNAT2 in regulation of pluripotent cells in culture and provides a number of specific, inexpensive, and nontoxic culture additives with the potential to improve the quality of ES cell culture.  相似文献   

4.
The neutral amino acid transporter 2 (SNAT2), which belongs to the SLC38 family of solute transporters, couples the transport of amino acid to the cotransport of one Na(+) ion into the cell. Several polar amino acids are highly conserved within the SLC38 family. Here, we mutated three of these conserved amino acids, Asn(82) in the predicted transmembrane domain 1 (TMD1), Tyr(337) in TMD7, and Arg(374) in TMD8; and we studied the functional consequences of these modifications. The mutation of N82A virtually eliminated the alanine-induced transport current, as well as amino acid uptake by SNAT2. In contrast, the mutations Y337A and R374Q did not abolish amino acid transport. The K(m) of SNAT2 for its interaction with Na(+), K(Na(+)), was dramatically reduced by the N82A mutation, whereas the more conservative mutation N82S resulted in a K(Na(+)) that was in between SNAT2(N82A) and SNAT2(WT). These results were interpreted as a reduction of Na(+) affinity caused by the Asn(82) mutations, suggesting that these mutations interfere with the interaction of SNAT2 with the sodium ion. As a consequence of this dramatic reduction in Na(+) affinity, the apparent K(m) of SNAT2(N82A) for alanine was increased 27-fold compared with that of SNAT2(WT). Our results demonstrate a direct or indirect involvement of Asn(82) in Na(+) coordination by SNAT2. Therefore, we predict that TMD1 is crucial for the function of SLC38 transporters and that of related families.  相似文献   

5.
Zhang Z  Grewer C 《Biophysical journal》2007,92(7):2621-2632
The sodium-coupled neutral amino acid transporter SNAT2 mediates cellular uptake of glutamine and other small, neutral amino acids. Here, we report the existence of a leak anion pathway associated with SNAT2. The leak anion conductance was increased by, but did not require the presence of, extracellular sodium. The transported substrates L-alanine, L-glutamine, and alpha-(methylamino)isobutyrate inhibited the anion leak conductance, each with different potency. A transporter with the mutation H-304A did not catalyze alanine transport but still catalyzed anion leak current, demonstrating that substrate transport is not required for anion current inhibition. Both the substrate and Na+ were able to bind to the SNAT2H-304A transporter normally. The selectivity sequence of the SNAT2H-304A anion conductance was SCN->NO3->I->Br->Cl->Mes-. Anion flux mediated by the more hydrophobic anion SCN- was not saturable, whereas nitrate flux demonstrated saturation kinetics with an apparent Km of 29 mM. SNAT2, which belongs to the SLC38 family of transporters, has to be added to the growing number of secondary, Na+-coupled transporters catalyzing substrate-gated or leak anion conductances. Therefore, we can speculate that such anion-conducting pathways are general features of Na+-transporting systems.  相似文献   

6.
System A-mediated amino acid transport across the placenta is important for the supply of neutral amino acids needed for fetal growth. All three system A subtypes (SNAT1, 2, and 4) are expressed in human placental trophoblast suggesting there is an important biological role for each. Placental system A activity increases as pregnancy progresses, coinciding with increased fetal nutrient demands. We have previously shown SNAT4-mediated system A activity is higher in first trimester than at term, suggesting that SNAT1 and/or SNAT2 are responsible for the increased system A activity later in gestation. However, the relative contribution of each subtype to transporter activity in trophoblast at term has yet to be evaluated. The purpose of this study was to identify the predominant subtype of system A in cytotrophoblast cells isolated from term placenta, maintained in culture for 66 h, by: (1) measuring mRNA expression of the three subtypes and determining the Michaelis-Menten constants for uptake of the system A-specific substrate, 14C-MeAIB, (2) investigating the contribution of SNAT1 to total system A activity using siRNA. Results: mRNA expression was highest for the SNAT1 subtype of system A. Kinetic analysis of 14C-MeAIB uptake revealed two distinct transport systems; system 1: Km = 0.38 ± 0.12 mM, Vmax = 27.8 ± 9.0 pmol/mg protein/20 min, which resembles that reported for SNAT1 and SNAT2 in other cell types, and system 2: Km = 45.4 ± 25.0 mM, Vmax = 1190 ± 291 pmol/mg protein/20 min, which potentially represents SNAT4. Successful knockdown of SNAT1 mRNA using target-specific siRNA significantly reduced system A activity (median 75% knockdown, n = 7). Conclusion: These data enhance our limited understanding of the relative importance of the system A subtypes for amino acid transport in human placental trophoblast by demonstrating that SNAT1 is a key contributor to system A activity at term.  相似文献   

7.
8.
Members of system N/A amino acid transporter (SNAT) family mediate transport of neutral amino acids, including l-alanine, l-glutamine, and l-histidine, across the plasma membrane and are involved in a variety of cellular functions. By using chemical labeling, glycosylation, immunofluorescence combined with molecular modeling approaches, we resolved the membrane topological structure of SNAT4, a transporter expressed predominantly in liver. To analyze the orientation using the chemical labeling and biotinylation approach, the "Cys-null" mutant of SNAT4 was first generated by mutating all five endogenous cysteine residues. Based on predicted topological structures, a single cysteine residue was introduced individually into all possible nontransmembrane domains of the Cys-null mutant. The cells expressing these mutants were labeled with N-biotinylaminoethyl methanethiosulfonate, a membrane-impermeable cysteine-directed reagent. We mapped the orientations of N- and C-terminal domains. There are three extracellular loop domains, and among them, the second loop domain is the largest that spans from amino acid residue ~242 to ~335. The orientation of this domain was further confirmed by the identification of two N-glycosylated residues, Asn-260 and Asn-264. Together, we showed that SNAT4 contains 10 transmembrane domains with extracellular N and C termini and a large N-glycosylated, extracellular loop domain. This is the first report concerning membrane topological structure of mammalian SNAT transporters, which will provide important implications for our understanding of structure-function of the members in this amino acid transporter family.  相似文献   

9.
The liver is a metabolism and transfer center of amino acids as well as the prime target organ of insulin. In this report, we characterized the regulation of system N/A transporter 3 (SNAT3) in the liver of dietary-restricted mice and in hepatocytes treated with serum starvation and insulin. The expression of SNAT3 was up-regulated in dietary-restricted mice. The expression of SNAT3 protein was detected on the plasma membrane of hepatocyte-like H2.35 cells with a half-life of 6-8 h. When H2.35 cells were depleted of serum, the expression of SNAT3 was increased. An increased concentration of insulin, however, suppressed SNAT3 expression. Interestingly, the down-regulation of SNAT3 expression by insulin was blocked by the specific phosphoinositide 3-kinase inhibitor LY294002 and mammalian target of rapamycin inhibitor, but not by MAPK inhibitor PD98059, suggesting that insulin exerts its effect on SNAT3 through phosphoinositide 3-kinase-mammalian target of rapamycin signaling. Surface biotinylation assay showed an increased level of SNAT3 on the cell surface after 0.5 h of insulin treatment, although no effect was observed after 24 h of treatment. Consistently, the transport of the substrate l-histidine was increased with short, but not long, treatment by insulin in both H2.35- and SNAT3-transfected COS-7 cells. The L-histidine uptake was inhibited significantly by L-histidine followed by 2-endoamino-bicycloheptane-2-carboxylic acid and L-cysteine and to a lesser extent by L-alanine and aminoisobutyric acid, but was not inhibited by alpha-(methylamino)isobutyric acid, implying that uptake of L-histidine in H2.35 cells is primarily mediated by system N transporters. In conclusion, differential regulation of SNAT3 by insulin and serum starvation reinforces the functional significance of this transporter in liver physiology.  相似文献   

10.
Yeast has two phosphate‐uptake systems that complement each other: the high‐affinity transporters (Pho84 and Pho89) are active under phosphate starvation, whereas Pho87 and Pho90 are low‐affinity transporters that function when phosphate is abundant. Here, we report new regulatory functions of the amino‐terminal SPX domain of Pho87 and Pho90. By studying truncated versions of Pho87 and Pho90, we show that the SPX domain limits the phosphate‐uptake velocity, suppresses phosphate efflux and affects the regulation of the phosphate signal transduction pathway. Furthermore, split‐ubiquitin assays and co‐immunoprecipitation suggest that the SPX domain of both Pho90 and Pho87 interacts physically with the regulatory protein Spl2. This work suggests that the SPX domain inhibits low‐affinity phosphate transport through a physical interaction with Spl2.  相似文献   

11.
Resorption of amino acids in kidney and intestine is mediated by transporters, which prefer groups of amino acids with similar physico-chemical properties. It is generally assumed that most neutral amino acids are transported across the apical membrane of epithelial cells by system B(0). Here we have characterized a novel member of the Na(+)-dependent neurotransmitter transporter family (B(0)AT1) isolated from mouse kidney, which shows all properties of system B(0). Flux experiments showed that the transporter is Na(+)-dependent, electrogenic, and actively transports most neutral amino acids but not anionic or cationic amino acids. Superfusion of mB(0)AT1-expressing oocytes with neutral amino acids generated inward currents, which were proportional to the fluxes observed with labeled amino acids. In situ hybridization showed strong expression in intestinal microvilli and in the proximal tubule of the kidney. Expression of mouse B(0)AT1 was restricted to kidney, intestine, and skin. It is generally assumed that mutations of the system B(0) transporter underlie autosomal recessive Hartnup disorder. In support of this notion mB(0)AT1 is located on mouse chromosome 13 in a region syntenic to human chromosome 5p15, the locus of Hartnup disorder. Thus, the human homologue of this transporter is an excellent functional and positional candidate for Hartnup disorder.  相似文献   

12.
13.
14.
15.
Betaine uptake is induced by hypertonic stress in a placental trophoblast cell line, and involvement of amino acid transport system A was proposed. Here, we aimed to identify the subtype(s) of system A that mediates hypertonicity-induced betaine uptake. Measurement of [14C]betaine uptake by HEK293 cells transiently transfected with human or rat sodium-coupled neutral amino acid transporters (SNATs), SNAT1, SNAT2 and SNAT4 revealed that only human and rat SNAT2 have betaine uptake activity. The Michaelis constants (Km) of betaine uptake by human and rat SNAT2 were estimated to be 5.3 mM and 4.6 mM, respectively. Betaine exclusively inhibited the uptake activity of SNAT2 among the rat system A subtypes. We found that rat SNAT1, SNAT2 and SNAT4 were expressed at the mRNA level under isotonic conditions, while expression of SNAT2 and SNAT4 was induced by hypertonicity in TR-TBT 18d-1 cells. Western blot analyses revealed that SNAT2 expression on plasma membrane of TR-TBT 18d-1 cells was more potently induced by hypertonicity than that in total cell lysate. Immunocytochemistry confirmed the induction of SNAT2 expression in TR-TBT 18d-1 cells exposed to hypertonic conditions and indicated that SNAT2 was localized on the plasma membrane in these cells. Our results indicate that SNAT2 transports betaine, and that tonicity-sensitive SNAT2 expression may be involved in regulation of betaine concentration in placental trophoblasts.  相似文献   

16.
Analogues of L-glutamine were designed and synthesized to test a hydrogen-bond hypothesis between ligand and neutral amino acid transporter ASCT2. The key design feature contains a substituted phenyl ring on the amide nitrogen that contains electron withdrawing and electron donating groups that alter the pKa of the amide NH. Through this study a preliminary binding site map has been developed, and a potent commercially available competitive inhibitor of the ASCT2 transporter has been identified.  相似文献   

17.
18.
The C-terminal fragment (Mr, 21,800) of colicin A (a bacterial toxin that kills sensitive Escherichia coli cells) has been crystallized. This fragment, which possesses the pore-forming activity of the toxin, resulted from thermolysin digestion of the entire molecule. The crystals are tetragonal, space group P4(1)2(1)2 (or P4(3)2(1)2) with a = b = 72.8 A, c = 170.4 A. They contain a dimer in the asymmetric unit and diffract to 2.7 A.  相似文献   

19.
Methylmercury (MeHg) is a potent neurotoxin. The mechanism(s) that governs MeHg transport across the blood-brain barrier and other biological membranes remains unclear. This study addressed the role of the L-type large neutral amino acid transporter, LAT1, in MeHg transport. Studies were carried out in CHO-k1 cells. Over-expression of LAT1 in these cells was associated with enhanced uptake of [(14)C]-MeHg when treated with L-cysteine, but not with the D-cysteine conjugate. In the presence of excess L-methionine, a substrate for LAT1, L-cysteine-conjugated [(14)C]-MeHg uptake was significantly attenuated. Treatment of LAT-1 over-expressing CHO-k1 cells with L-cysteine-conjugated MeHg was also associated with increased leakage of lactate dehydrogenase into the media as well as reduced cell viability measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. In contrast, knock-down of LAT1 decreased the uptake of l-cysteine-conjugated MeHg and attenuated the effects of MeHg on lactate dehydrogenase leakage and CHO-k1 cell viability. These results indicate that the MeHg-L-cysteine conjugate is a substrate for the neutral amino acid transporter, LAT1, which actively transports MeHg across membranes.  相似文献   

20.
The PAT2 transporter has been shown to act as an electrogenic proton/amino acid symporter. The PAT2 cDNA has been cloned from various human, mouse and rat tissues and belongs to a group of four genes (pat1 to pat4) with PAT3 and PAT4 still resembling orphan transporters. The first immunolocalization studies demonstrated that the PAT2 protein is found in the murine central nervous system in neuronal cells with a proposed role in the intra and/or intercellular amino acid transport. Here we provide a detailed analysis of the transport mode and substrate specificity of the murine PAT2 transporter after expression in Xenopus laevis oocytes, by electrophysiological techniques and flux studies. The structural requirements to the PAT2 substrates - when considering both low and high affinity type substrates - are similar to those reported for the PAT1 protein with the essential features of a free carboxy group and a small side chain. For high affinity binding, however, PAT2 requires the amino group to be located in an alpha-position, tolerates only one methyl function attached to the amino group and is highly selective for the L-enantiomers. Electrophysiological analysis revealed pronounced effects of membrane potential on proton binding affinity, but substrate affinities and maximal transport currents only modestly respond to changes in membrane voltage. Whereas substrate affinity is dependent on extracellular pH, proton binding affinity to PAT2 is substrate-independent, favouring a sequential binding of proton followed by substrate. Maximal transport currents are substrate-dependent which suggests that the translocation of the loaded carrier to the internal side is the rate-limiting step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号