首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Henneguya rondoni n. sp. found in the peripheral lateral nerves located below the two lateral lines of the fish Gymnorhamphichthys rondoni (Teleostei, Rhamphichthyidae) from the Amazon river is described using light and electron microscopy. Spherical to ellipsoid cysts measuring up to 110 microm in length contained only immature and mature spores located in close contact with the myelin sheaths of the nervous fibres. Ellipsoidal spores measured 17.7 (16.9-18.1)-microm long, 3.6 (3.0-3.9)-microm wide, and 2.5 (2.2-2.8)-microm (n=25) thick. The spore body measuring 7.0 (6.8-7.3)-microm long was formed by two equal symmetric valves, each with an equal tapering tail 10.7 (10.3-11.0) microm in length. The tails were composed of an internal dense material surrounded by an external homogeneous sheath of hyaline substance. The valves surrounded two equal pyriform polar capsules measuring 2.5 (2.2-2.8)-microm long and 0.85 (0.79-0.88)-microm (n=25) wide and a binucleated sporoplasm cell containing globular sporoplasmosomes 0.38 (0.33-0.42) microm (n=25) in diam. with an internal eccentric dense structure with half-crescent section. Each polar capsule contains an anisofilar polar filament with 6-7 turns obliquely to the long axis. The matrix of the polar capsule was dense and the wall filled with a hyaline substance. The spores differed from those of previously described species. Based on the ultrastructural morphology of the spore and specificity to the host species, we propose a new species name H. rondoni n. sp.  相似文献   

2.
A fish-infecting Microsporidia Potaspora morhaphis n. gen., n. sp. found adherent to the wall of the coelomic cavity of the freshwater fish, Potamorhaphis guianensis, from lower Amazon River is described, based on light microscope and ultrastructural characteristics. This microsporidian forms whitish xenomas distinguished by the numerous filiform and anastomosed microvilli. The xenoma was completely filled by several developmental stages. In all of these stages, the nuclei are monokaryotic and develop in direct contact with host cell cytoplasm. The merogonial plasmodium divides by binary fission and the disporoblastic pyriform spores of sporont origin measure 2.8+/-0.3 x 1.5+/-0.2 microm. In mature spores the polar filament was arranged into 9-10 coils in 2 layers. The polaroplast had 2 distinct regions around the manubrium and an electron-dense globule was observed. The small subunit, intergenic space and partial large subunit rRNA gene were sequenced and maximum parsimony analysis placed the microsporidian described here in the clade that includes the genera Kabatana, Microgemma, Spraguea and Tetramicra. The ultrastructural morphology of the xenoma, and the developmental stages including the spores of this microsporidian parasite, as well as the phylogenetic analysis, suggest the erection of a new genus and species.  相似文献   

3.
Myxobolus myleus n. sp. is described from the gall-bladder of the freshwater fish Myleus rubripinnis collected near the city of Oriximiná in the Amazon System, Brazil. The spores obtained from the bile contained two equal symmetrical and smooth valves, each forming the spore wall. The spores were large, with a cone-like form, a semi spherical basal contour and measured (in μm) 19.3 ± 0.5 (n = 25) × 8.3 ± 0.5 (n = 25) × 4.0 ± 0.3 (n = 15). The apical end of the spores contained two elongate, equal and pointed conical polar capsules measuring 13.2 ± 0.4 μm (n = 25) in length and 3.0 ± 0.3 μm (n = 15) in width, each having a slightly tapering polar filament with 19 to 21 turns. The polar capsules were extended below at about 4/5 of the total length of the spores. The sporoplasm was binucleate and contained some sporoplasmosomes. All infected fish presented hypertrophy of the gall-bladder due to presence of the brownish parasite floating in the bile. In this paper we describe this new species of myxosporean based on light and ultrastructural observations, together with its associated pathology.  相似文献   

4.
Myxidium volitans sp. nov. (Myxozoa: Myxidiidae) parasitizing the hypertrophied green-brownish gallbladder of the teleost Dactylopterus volitans, collected in the Atlantic coast near Niterói, Brazil was described based on ultrastructural studies. The spores were fusiform, sometimes slightly crescent-shaped on average 21.7 ± 0.3 μm (mean ± standard deviation) (n = 50) long and 5.6 ± 0.4 μm (n = 30) wide. The spore wall was thin and smooth, comprising two equally-sized valves joined by a hardly visible sutural ridge. Spores containing two pyriform polar capsules (PC) (5.0 ± 0.4 × 2.3 ± 0.3 μm) (n = 30) are situated in each extremity of the spore. The PC wall was composed of hyaline layer (0.20-0.29 μm thick) and by a thin external granular layer. Each PC contains a polar filament (PF) with irregular arrangements that was projected from its apical region to the bases of PC and coiled laterally from bases to the tip of PC. Some regular striations and S-like structures in the periphery of the PFs with four-five irregular sections were observed. Based on the spore morphology, ultrastructural differences and the specificity of the host we describe this parasite as a new myxosporidian, named M. volitans sp. nov.  相似文献   

5.
6.
Spore ornamentation of Haplosporidium nelsoni and Haplosporidium costale was determined by scanning electron microscopy. For H. nelsoni, the spore surface was covered with individual ribbons that were tightly bound together and occurred as a single sheet. In some spores, this layer was overlaid with a network of branching fibers, about 0.05 microm in diameter, which often was dislodged from the spore at the aboral pole. For H. costale, ornamentation consisted of a sparse network of branching fibers on the spore surface. Molecular phylogenetic analysis of the phylum Haplosporidia revealed that Urosporidium, Bonamia, and Minchinia were monophyletic but that Haplosporidium was paraphyletic. All species of Minchinia have ornamentation composed of epispore cytoplasm, supporting the monophyly of this genus. The presence of spores with a hinged operculum and spore wall-derived ornamentation in Bonamia perspora confounds the distinction between Bonamia and Haplosporidium. Species with ornamentation composed of outer spore wall material and attached to the spore wall do not form a monophyletic group in the molecular phylogenetic analysis. These results suggest that the widely accepted practice of assigning all species with spore wall-derived ornamentation to Haplospordium cannot be supported and that additional genera are needed in which to place some species presently assigned to Haplosporidium.  相似文献   

7.
A new microsporidian that infects the lizardfish Saurida undosquamis (Richardson, 1848) that are caught in the Arabian Gulf in Saudi Arabia is described here. This parasite invades the skeletal muscle of the abdominal cavity forming white, cyst-like structures containing numerous spores. The prevalence of the infection was 32·1% (135/420). The spores were oval to pyriform in shape and measured approximately 3·3 μm×2·0 μm. The developing spores were found within parasitophorous vacuoles. In mature spores, the polar filament was arranged into 5 coils in a row. Molecular analysis of the rRNA genes, including the ITS region, and phylogenetic analyses using maximum parsimony, maximum likelihood, and Bayesian inference were performed. The ultrastructural characteristics and phylogenetic analyses support the recognition of a new species, herein named Heterosporis saurida n. sp.  相似文献   

8.
A previously unrecognized microsporidian (Kabatana newberryi n. sp.) is described from the musculature of Eucyclogobius newberryi (Gobiidae) in Big Lagoon, Humboldt County, California. Spores are ovoid, ranging in size from 2.8 +/- 0.3 microm in total length and 1.9 +/- 0.4 microm in width (measurements of 30 spores made by calculation from micrograph). The polar filament has 9-10 coils in 1-2 rows. Development occurs in direct contact with host muscle cell cytoplasm, without xenoma or sporophorous vesicle. Phylogenetic analysis of the new species and of 35 other microsporidians known to infect fish using 1115 base pairs of aligned 16S rRNA gene indicate the new species is most closely related to Kabatana takedai. However, the new species differs by 11% sequence divergence from K. takedai. Divergence in morphology and genetic data allow for diagnosis from all other fish-infecting microsporidia and supports recognition of a new species of microsporidian, Kabatana newberryi n. sp., presently known only from a suspected specific host, the endangered tidewater goby Eucyclogobius newberryi.  相似文献   

9.
南海石斑鱼苗种肠道微孢子虫病病原的鉴定   总被引:1,自引:0,他引:1  
研究通过组织病理分析、超微结构观察以及分子特征分析对石斑鱼(Epinephelus spp.)苗种肠道微孢子虫病病原进行了鉴定。其为一肠孢虫属新种, 命名为石斑鱼肠孢虫(Enterospora epinepheli sp. n.), 专性寄生于细胞核内, 发育过程与肠孢虫属模式种黄道蟹肠孢虫(Enterospora canceri)一致。早期单核裂殖体通过一层简单的电子薄膜与宿主细胞核质隔离。随后, 单核裂殖体发育形成多核裂殖原质团。此时, 细胞核出现明显肥大, 有的甚至被裂殖子胀破。裂殖原质团进一步发育形成多核产孢体, 并开始出现许多高电子密度的囊泡状结构。这些与极丝及锚状盘有关的囊泡状结构聚集在藕核周围, 并组装形成微孢子虫特征性结构(挤出装置)前体。随后, 产孢体原生质团通过连续分裂形成一个个孢子母细胞。孢子母细胞与细胞核直接接触, 并直接发育形成成熟孢子。成熟孢子椭圆形, 孢子长(1.56±0.31) μm (1.07—1.96 μm), 宽(1.08±0.98) μm (0.93—1.28 μm)。 孢壁分为3层, 外壁电子密度高, 厚(15.51±0.95) nm (9.87—26.18 nm), 内壁为电子透明层, 较外层更厚(81.13±2.71) nm (57.16—110.81 nm), 最里面为孢质膜。极丝为同型极丝, 共5—6圈, 分2排排列。组织病理学分析发现该微孢子虫寄生于肠道上皮杯状细胞核内, 肠壁脱落的内容物中也发现大量的微孢子虫。序列比对发现该种与之前报道的石斑鱼肠道微孢子虫待定种(Microsporidium sp.)序列基本一致, 与其他相似性较高的种类的遗传距离在0.162—0.225。系统发育关系分析显示肠胞虫科的种类明显分为两支, 石斑鱼肠孢虫和肠孢虫属其他种类及毕氏肠胞虫聚为一个独立分支, 但不与该分枝中任何种类形成姊妹支。  相似文献   

10.
Microsporidia of the genus Amblyospora parasiting the adipose body of mosquito larvae of the genus Aedes and Culex has been studied with both light and electron microscopy. Six new species of microsporidia are described based on ultrastructural characteristics of spores and sporogony stages. Amblyospora flavescens sp. n. Mature spores are egg-shaped. The spore wall with three layers, about 165 nm. Exospore is two-membranous. Subexospore is absent. Endospore is electron-translucent. Polaroplast consists of three parts: lamellar, large vesicular, lamellar. The anisofilar polar filament with 10--11 coils (3 1/2 + 2 1/2 + 4-5). Fixed spores are 6.3 +/- 0.1 x 4.24 +/- 0.1 microm. Amblyospora kolarovi sp. n. Mature spores are egg-shaped. The spore wall with three layers, about 265-315 nm. Exospore shapes tucks on the surface of spore. It is two-membranous. Subexospore is quagge, structural. Endospore is electron-translucent. Polaroplast consists of two parts: lamellar and large vesicular. The anisofilar polar filament with 11-13 coils (3 + 8-10). Fixed spores are 5.4-5.6 x 3.5-4.2 microm. Amblyospora orbiculata sp. n. Mature spores are widely egg-shaped. On a back pole there is a small concavity. The spore wall with three layers, about 155 nm. Exospore is shapes tucks on a surface of spore. It is two-membranous. Subexospore is absent. Endospore is electron-translucent. Polaroplast consists of three parts: lamellar, vesicular, lamellar. Polar filament is anisofilar, with 11 1/2 coils (4 1/2 + 1 + 6). Fixed spores are 6.3 +/- 0.1 x x 4.0 +/- 0.1 microm. Amblyospora rugosa sp. n. Mature spores are egg-shaped. On a back pole there is a small concavity. The spore wall with three layers, about 225 nm. Exospore is shapes tucks on a surface of spore. It is two-membranous. Subexospore is quaggy, structural. Endospore is electron-translucent. Polaroplast lamellate. Polar filament is anisofilar, with 17 1/2 coils (3 1/2 + 1 + 13). Fixed spores are 5.3 +/- 0.1 x 3.7 +/- 0.1 microm. Amblyospora undata sp. n. Mature spores are egg-shaped. The spore wall is three-layered, about 220 nm. Exospore is shapes tucks on a surface of spore. It is two-membranous. Subexospore is quaggy, structural. Endospore is electron-translucent. Polaroplast lamellate. The anisofilar polar filament with 8 coils (3 + 5). Fixed spores are 5.0 +/- 0.1 x 3.0 +/- 0.1 microm. Amblyospora urski sp. n. Mature spores have widely oval form. The back pole is concave. The spore wall with three layers, about 280 nm. Exospore is shapes tucks on a surface of spore. It is two-membranous. Subexospore is quaggy, structural. Endospore is electron-translucent. Polaroplast lamellate. Polar filament is anisofilar, with 6 coils (2 + 4). Fixed spores are 4.4 +/- 0.1 x 2.9 +/- 0.1 microm.  相似文献   

11.
We describe the microsporidian Amazonspora hassar n. gen., n. sp. from the gill xenomas of the teleost Hassar orestis (Doradidae) collected in the estuarine region of the Amazon River. The parasite appeared as a small whitish xenoma located in the gill filaments near the blood vessels. Each xenoma consisted of a single hypertrophic host cell (HHC) in the cytoplasm of which the microsporidian developed and proliferated. The xenoma wall was composed of up to approximately 22 juxtaposed crossed layers of collagen fibers. The plasmalemma of the HHC presented numerous anastomosed, microvilli-like structures projecting outward through the 1-3 first internal layers of the collagen fibrils. The parasite was in direct contact with host cell cytoplasm in all stages of the cycle (merogony and sporogony). Sporogony appears to divide by plasmotomy, giving rise to 4 uninucleate sporoblasts, which develop into uninucleate spores. The ellipsoidal spores measured 2.69 +/- 0.45 x 1.78 +/- 0.18 microm, and the wall measured approximately 75 nm. The anchoring disk of the polar filament was subterminal, being shifted laterally from the anterior pole. The polar filament was arranged into 7-8 coils in a single layer in the posterior half of the spore, surrounding the posterior vacuole. The polaroplast surrounded the uncoiled portion of the polar filament, and it was exclusively lamellar. The spores and different life-cycle stages were intermingled within the cytoplasm of the HHC, surrounding the central hypertrophic deeply branched nucleus. The ultrastructural morphology of this microsporidian parasite suggests the erection of a new genus and species.  相似文献   

12.
Meglitschia mylei n. sp. found in the gall bladder of the teleostean fish Myleus rubripinnis (Serrasalmidae) from the middle Amazonian region of Brazil is described using light and transmission electron microscopy. The spores observed in the bile averaged 24.6±0.8 μm long, 8.7±0.4 μm wide and 5.1±0.3 μm thick and were strongly furcate and arcuate ∩-shaped composed of two symmetric equal-sized valves, up to ~70 nm thick. Each valve possessed one opposed tapering appendage, 20.1±0.7 μm long, oriented parallel towards the basal tip of the appendages and joined along a right suture line forming a thick strand. The strand goes around the central part of the spore, which in turn surrounds two equal and symmetric spherical polar capsules (PC), 2.1±0.3 μm in diameter, located at the same level. Each capsule contains a polar filament with five (rarely six) coils. The binucleate sporoplasm was irregular in shape, contained several sporoplasmosomes, ~175 nm in diameter and filled all the space of the two caudal appendages. Based on the arc shape of the spore with two tapering caudal appendages oriented to the basis of spores, on the number and position of the PC and of the polar filament coils and arrangements, and on the host specificity, we propose the name M. mylei n. sp. for this new myxozoan. Accordingly, this is the second described species of this genus.  相似文献   

13.
Based on scanning electron microscopy and the small subunit ribosomal RNA (SSU rRNA), Haplosporidium tuxtlensis n. sp. (Haplosporidia), a parasite found in the visceral tissues of the false limpet Siphonaria pectinata (Linnaeus, 1758), is described. The spores are ellipsoidal (3.61 ± 0.15 μm × 2.69 ± 0.19 μm), with a circular lid (2.94 ± 0.5 μm) representing the operculum. The spore wall bears filaments occurring singly, or in clusters, of 2 to 8, fusing distally. Phylogenetic relationships of H. tuxtlensis n. sp. were assessed with other described species using the SSU rRNA sequence. Haplosporidium tuxtlensis n. sp. is sister taxon to Haplosporidium pickfordi Barrow, 1961. The morphological characteristics (spore wall structure, shape, size, and filament structure) and the unique host identity corroborate it as a new species. Additionally, this is the first record of Haplosporidia infecting striped false limpets in the Gulf of Mexico.  相似文献   

14.
R. Toth 《Protoplasma》1976,89(3-4):263-278
Summary The structure of unilocular sporangia inP. littoralis was investigated along with several other species of brown algae in order to study the mechanism by which propagules are released from unilocular reproductive structures. Unilocular sporangia inP. littoralis are composed of a spherical cell wall of two distinct layers and contain a number of zoospores. The mass of spores is surrounded and permeated by mucilaginous carbohydrates. It is suggested that the production of these carbohydrates generates the necessary pressure to weaken the sporangial wall. In addition, ultrastructural observations indicate that further weakening seems to occur due to digestion of the inner wall layer. Walls of sporangia were mechanically broken just prior to normal spore release in order to investigate whether internal pressure exists, and if it can effect spore discharge. Results show that an internal pressure does exist prior to normal spore discharge and that this pressure is not generated by turgor pressure of the spores themselves or by a semi-permeable wall osmoticum system. The discharge of spores seems to occur when the carbohydrate around the spores swells. The adsorption of water when plants are immersed by the incoming tide thus seems a likely mechanism of spore discharge. The similarities of unilocular reproductive structures and spore release in several brown algal species suggests common mechanisms of propagule discharge for members of thePhaeophyta.  相似文献   

15.
ABSTRACT. The microsporidium Nadelspora canceri n. g., n. sp., is described from the striated musculature of the Dungeness crab ( Cancer magister ) in Oregon, USA. The needle-shaped spores were rounded anteriorly, tapered to a posterior point and measured 7.1–11.8 × 0.2–0.3 μm in fixed preparations. The extremely narrow spore diameter prevented observation of morphological details at the light microscopic level and ultrastructural details of mature spores were difficult to resolve. Meronts were not observed and the monokaryotic merozoites and sporonts were not contained within either parasitophorous or sporophorous vesicles. Sporonts were disporoblastic and gave rise to monokaryotic sporoblasts that became narrow and elongate as they developed into immature spores with a developing polar filament. The nucleus was not clearly resolved in mature spores and may have been surrounded by the lamellar polaroplast. The polar filament was of nearly uniform diameter throughout most of its length and ended abruptly about three-fourths of the distance from the anterior end of the spore. Unusual spherical non-membrane bound granules surrounded the polar filament in a spiral arrangement. The new microsporidium resembles members of the family Mrazekiidiae, but differs in lacking a diplokaryon at any stage. It is probably most closely related to Baculea daphniae from which it differs primarily by spore shape and size. The familial relationships of the genus Baculea have not been determined and it is proposed to include it with Nadelspora in the new family Nadelsporidae.  相似文献   

16.
ABSTRACT. Bulk maceration of Early Devonian (Lochkovian) deposits from the Welsh Borderland has yielded eight specimens of a new type of sporangium characterized by its elongate shape and distinctive spores. The specimens have been examined using scanning electron, transmission electron and light microscopy. The elongate sporangia occur isolated and are fragmented to varying degrees. They contain trilete spores that possess a proximal surface with shallow murornate ornament and a distal surface that is laevigate. The spores belong to the dispersed spore genus Scylaspora , and this is the first report of such spores in situ . Ultrastructural studies demonstrate that the spore walls are bilayered with a lamellate inner layer overlain by an essentially homogeneous outer layer. There is little or no associated extra-exosporal material. To date this is the earliest reported example of lamellate wall ultrastructure in trilete spores. Models of spore wall development are suggested in the light of evidence provided by spore wall ultrastructure. Detailed comparisons of the characters preserved in the fossils (morphological, anatomical and ultrastructural), with those in other fossil and extant plants, currently shed little light on the phylogenetic relationships of these specimens, primarily due to the paucity of comparable data. It is proposed that the plant is probably of vascular status, but in the absence of evidence for vascular tissue, it must be classified as rhyniophytoid.  相似文献   

17.
A new species of Haplosporidium Caullery & Mesnil, 1899 parasitising the pulmonate gastropod Siphonaria lessonii Blainville in Patagonia, Argentina, is described based on morphological (scanning and transmission electron microscopy) and sequence (small subunit ribosomal RNA gene) data. Different stages of sporulation were observed as infections disseminated in the digestive gland. Haplosporidium patagon n. sp. is characterised by oval or slightly subquadrate spores with an operculum that is ornamented with numerous short digitiform projections of regular height, perpendicular to and covering its outer surface. The operculum diameter is slightly larger than the apical diameter of the spore. Neither the immature nor mature spores showed any kind of projections of the exosporoplasm or of the spore wall. Regarding phylogenetic affinities, the new species was recovered as sister to an undescribed species of Haplosporidium Caullery & Mesnil, 1899 from the polychaete family Syllidae Grube from Japanese waters. The morphological characters (ornamentation of the operculum, spore wall structure, shape and size of spores, and the lack of spore wall projections) corroborate it as an as yet undescribed species of Haplosporidium and the first for the phylum in marine gastropods of South America. Siphonaria lessonii is the only known host to date.  相似文献   

18.
A cultivation system has been developed for Penicillium urticae (NRRL 2159A) which yields 'microcycle' conidiation in submerged culture. Spherical growth of spores was initiated by incubation at 37 degrees C in a growth-favoring medium. Transfer of these enlarged spores to a nitrogen-poor medium at 35 degrees C resulted in synchronous germination and limited outgrowth followed by roughly synchronous conidiation. An ultrastructural study of the spherical growth stage indicates a significant loss of cell envelope fine structure and a general increase in the number of cellular organelles. Loss of the complex pattern of rodlets on the spore surface, and the trench-like invaginations of the plasma membrane were most prominent. From an ultrastructural point of view these large spores (about 6 mum in diameter) appeared to be perfectly normal.  相似文献   

19.
ABSTRACT This is the first ultrastructural study of the development of a marine actinosporean and of a species belonging to the genus Sphaeractinomyxon Caullery & Mesnil, 1904. S. ersei n. sp. is described from a limnodriloidine oligochaete, Doliodrilus diverticulatus Erséus, 1985, from Moreton Bay. Queensland, Australia. Development is asynchronous, there being all stages from two-celled pansporoblasts through to mature spores present simultaneously within a host. Spores develop in groups of eight within pansporoblasts in the coelom and when mature are located also in the intestinal lumen. The primordial spore envelope and sporoplasm develop separately in the pansporoblast until the polar filament is formed within the polar capsule and the capsulogenic cell cytoplasm has begun to degrade. The sporoplasm then enters the spore through a separated valve junction. Mature spores are triradially symmetrical with three centrally located polar capsules and a single binucleate sporoplasm with about 46 germ cells. Swellings or projections of the epispore do not occur when spores exit the host and contact sea water.  相似文献   

20.
The genus Chlamydomyzium is a little studied holocarpic oomycete parasite of nematodes of uncertain phylogenetic and taxonomic position. A new holocarpic species, Chlamydomyzium dictyuchoides, is described which has usually refractile cytoplasm and a dictyuchoid pattern of spore release. This new species infects bacteriotrophic rhabditid nematodes and was isolated from diverse geographical locations. Infection was initiated by zoospore encystment on the host surface and direct penetration of the cuticle. A sparsely branched, constricted, refractile thallus was formed which eventually occupied almost the entire host body cavity, often accompanied by complete dissolution of the host cuticle. Walled primary cysts formed throughout the thallus and each cyst released a single zoospore via an individual exit papillum, leaving a characteristic dictyuchoid wall net behind. At later stages of infection some thalli formed thick-walled stellate resting spores in uniseriate rows. Resting spore formation appeared to be parthenogenetic and was not accompanied by the formation of antheridial compartments. These spores had ooplast-like vacuoles and thick multi-layered walls, both of which suggest they were oospores. The maximum likelihood tree of sequences of the small ribosomal subunit (SSU) gene placed this new isolate in a clade before the main saprolegnialean and peronosporalean lines diverge. A second undescribed Chlamydomyzium sp., which has direct spore release forms a paraphyletic clade, close to C. dictyuchoides and Sapromyces. The fine structure of other documented Chlamydomyzium species was compared, including an undescribed (but sequenced) isolate, SL02, from Japan, Chlamydomyzium anomalum and Chlamydomyzium oviparasiticum. Chlamydomyzium as currently constituted is a paraphyletic genus that is part of a group of phylogenetically problematic early diverging clades that lie close to both the Leptomitales and Rhipidiales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号