首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MS Rahman  P Thomas 《PloS one》2012,7(7):e40825
Hypoxia-inducible factor-α (HIF-α) and cytochrome P450 1A (CYP1A) are biomarkers of environmental exposure to hypoxia and organic xenobiotic chemicals that act through the aryl hydrocarbon receptor, respectively. Many aquatic environments heavily contaminated with organic chemicals, such as harbors, are also hypoxic. Recently, we and other scientists reported HIF-α genes are upregulated by hypoxia exposure in aquatic organisms, but the molecular mechanisms of hypoxia regulation of CYP1A expression have not been investigated in teleost fishes. As a first step in understanding the molecular mechanisms of hypoxia modulation of CYP1A expression in fish, we characterized CYP1A cDNA from croaker liver. Hypoxia exposure (dissolved oxygen, DO: 1.7 mg/L for 2 to 4 weeks) caused significant decreases in hepatic CYP1A mRNA and protein levels compared to CYP1A levels in fish held in normoxic conditions. In vivo studies showed that the nitric oxide (NO)-donor, S-nitroso-N-acetyl-DL-penicillamine, significantly decreased CYP1A expression in croaker livers, whereas the competitive inhibitor of NO synthase (NOS), N(ω)-nitro-L-arginine methyl ester, restored CYP1A mRNA and protein levels in hypoxia-exposed (1.7 mg DO/L for 4 weeks) fish. In vivo hypoxia exposure also markedly increased interleukin-1β (IL-1β, a cytokine), HIF-2α mRNA and endothelial NOS (eNOS) protein levels in croaker livers. Pharmacological treatment with vitamin E, an antioxidant, lowered the IL-1β, HIF-2α mRNA and eNOS protein levels in hypoxia-exposed fish and completely reversed the down-regulation of hepatic CYP1A mRNA and protein levels in response to hypoxia exposure. These results suggest that hypoxia-induced down-regulation of CYP1A is due to alterations of NO and oxidant status, and cellular IL-1β and HIF-α levels. Moreover, the present study provides the first evidence of a role for antioxidants in hepatic eNOS and IL-1β regulation in aquatic vertebrates during hypoxic stress.  相似文献   

3.
This study examined the role of nitric oxide (NO) on the expression of the hepatic vasoregulatory gene during polymicrobial sepsis. Aminoguanidine (AG, 100 mg/kg) or Nomega-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg) was injected intraperitoneally at 0, 3, 6, 10, and 20 h after a cecal ligation and puncture (CLP). The heart rate increased 24 h after the CLP, and this increase was attenuated by L-NAME and further attenuated by AG. The mean arterial pressure in the CLP animals did not change significantly 24 h after the onset of sepsis but was increased after the L-NAME injection. Sepsis increased the serum aminotransferase levels, which were attenuated by AG but augmented by L-NAME. CLP increased the mRNA level of the ET-1 and ETB receptors in the liver. This increase was prevented by AG but augmented by L-NAME. The level of iNOS and HO-1 mRNA expression were increased by CLP, which was prevented by both AG and L-NAME. The level of TNF-alpha and COX-2 mRNA expression increased after CLP, and was attenuated by AG. These results show that iNOS and eNOS are regulated differently in sepsis. While eNOS appears to have a protective role in liver microcirculation, the strong upregulation of iNOS might contribute to a microvascular dysfunction and hepatic injury.  相似文献   

4.
Kim JY  Lee SM 《Life sciences》2004,75(16):2015-2026
The aim of this study was to investigate the effects of ascorbic acid on hepatic vasoregulatory gene expression during polymicrobial sepsis. Rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP). Rats received either vehicle (n = 10) or ascorbic acid (AA, 100 mg/kg, n = 10) intravenously immediately after the CLP procedure. Serum aminotransferase levels and hepatic lipid peroxides markedly increased 24 h after CLP and this increase was attenuated by AA treatment. The hepatic concentrations of reduced glutathione decreased in CLP animals. This decrease was inhibited by AA. CLP significantly increased the mRNA level of ET-1 (p < 0.01) and ETB receptor (p < 0.01) in livers; an increase that was prevented by AA treatment. There were no significant changes in ETA mRNA expression among any of the experimental groups. There were significant increases in the mRNA expression of nitric oxide synthases (p < 0.01) and heme oxygenase-1 (p < 0.01) in livers from CLP animals. This increase was prevented by AA treatment. The expression of tumor necrosis factor-alpha and cyclooxygenase-2 mRNAs significantly increased 4.9-fold (p < 0.01) and 4.4-fold (p < 0.01) in livers from CLP animals, respectively. This increase was attenuated by AA treatment. Our data suggest that AA reduces oxidative stress and lipid peroxidation, regulates the hepatic vasoregulatory gene expression in polymicrobial sepsis and thus it could reduce hepatic microvascular dysfunction during sepsis.  相似文献   

5.
Gadolinium chloride (GdCl) is commonly used to study the role of Kupffer cells in liver disease in vivo. The in vitro effects of GdCl on cultured Kupffer cells are poorly characterised. The aim of this study was to characterise rat Kupffer cell TNFalpha production, phagocytic function, and ED1 and ED2 antigen expression following the administration of GdCl. For in vivo experiments, rats received 10mg/kg GdCl IV or sterile saline. Lipopolysaccharide 3mg/kg IP (LPS) was administered 4h prior to sacrifice on Days 1-3, 5 or 8 following GdCl injection. Hepatic ED1 and ED2 positive macrophage numbers and TNFalpha mRNA levels were determined. For in vitro experiments, Kupffer cells were cultured in the presence of 0-270 microM GdCl for 24h following which viability, TNFalpha protein production in response to LPS (10 ng/ml), phagocytosis, and ED1 and ED2 staining were evaluated. In vivo, the proportion of ED1 positive cells which were ED2 positive was reduced from 87 to 3% and hepatic TNFalpha mRNA levels following LPS declined by 60% over Days 1-5 after injection of GdCl (P<0.01). In vitro, phagocytosis declined with increasing concentrations of GdCl. GdCl (0-27 microM) did not effect cultured Kupffer cell viability, TNFalpha production, ED1 or ED2 staining. We conclude that GdCl significantly reduces ED2 expression by Kupffer cells in vivo. In vitro, GdCl has a dose dependent effect on phagocytosis but only effects viability and TNFalpha production at high concentrations. ED2 expression of cultured Kupffer cells is not affected by GdCl.  相似文献   

6.
The signaling pathways involved in insulin and glucagon regulation of CYP2E1 expression were examined in primary cultured rat hepatocytes. Insulin addition to primary cultured rat hepatocytes for 24 h resulted in an approximately 80% and >90% decrease in CYP2E1 mRNA levels at 1 and 10 nM insulin, respectively, relative to untreated cells. Addition of the phosphatidylinositol 3-kinase inhibitor wortmannin, or the Src kinase inhibitor geldanamycin, prior to insulin addition, inhibited the insulin-mediated decline in CYP2E1 mRNA. In contrast, treatment of cells with glucagon (100 nM), or the cAMP analogue dibutyryl-cAMP (50 microM), for 24 h increased CYP2E1 mRNA levels by approximately 7-fold. Addition of the protein kinase A inhibitor H89 prior to glucagon treatment attenuated the glucagon-mediated increase in CYP2E1 mRNA by approximately 70%. Glucagon (100 nM) opposed the effects of insulin (1 nM) on CYP2E1 mRNA expression and conversely, insulin blocked the effects of glucagon. These data provide compelling evidence for the regulation of CYP2E1 expression via mutually antagonistic signaling pathways involving insulin and glucagon.  相似文献   

7.
8.
9.
Cytochrome P450 2E1 (CYP2E1) is highly inducible in a subset of astrocytes in vivo following ischemic or mechanical injury and in vitro by lipopolysaccharide or interleukin-1beta. In the present study, phorbol-12,13-dibutyrate (PDBu) was found to induce catalytically active CYP2E1 more than fourfold in cortical glial cultures. Little induction was seen up to 12 h, and full effects only at 21-24 h of PDBu treatment. CYP2E1 expression in PDBu-treated cells was enriched in a subset of astrocytes. The protein kinase C inhibitors, staurosporine and calphostin C, and the tyrosine kinase inhibitor genistein, but not its inactive analogue daidzein, prevented the induction of CYP2E1 by PDBu. It is suggested that CYP2E1, together with interleukin-6 and ciliary neurotrophic factor, is part of a response of astrocytes to cellular stress elicited by, e.g. cerebral injury, cytokines or phorbol ester, and mediated in part through protein kinase C.  相似文献   

10.
The pathogenesis of sepsis is characterized by overwhelming inflammatory responses that lead to tissue damage and organ failure. Toll-like receptor (TLR) signaling is crucial for induction of hyperinflammatory responses and tissue injury during sepsis. Genipin, an aglycon of geniposide, has antiinflammatory and antimicrobial activities. The purpose of this study was to test the hypothesis that genipin reduces multiple organ dysfunction and mortality during sepsis through inhibition of TLR signaling. Male ICR were subjected to sepsis by cecal ligation and puncture (CLP) or endotoxemia by lipopolysaccharide (LPS). Various doses of genipin (1, 2.5 and 5 mg/kg) or a vehicle were administered intravenously immediately after CLP or intraperitoneally after LPS treatment. In another set of survival tests, mice were treated with 2.5 mg/kg of genipin 0 and 24 h after CLP. Genipin was found to improve survival and to attenuate multiple organ dysfunction. Genipin attenuated production of proinflammatory cytokines and release of high-mobility group box 1 (HMGB1). Genipin prevented TLR2 and TLR4, myeloid differentiation factor 88 and the Toll/interleukin-1 receptor domain-containing adaptor protein, inducing interferon-β overexpression. Phosphorylation of mitogen-activated protein kinases and interferon regulatory factor 3 and translocation of nuclear factor (NF)-κB were prevented by genipin. Moreover, genipin attenuated increases in serum tumor necrosis factor-α and HMGB1 in LPS-induced endotoxemia. Pam3CSK4- and LPS-mediated production of nitrites and proinflammatory cytokines was suppressed by genipin in RAW264.7 cells. Genipin attenuated mortality and organ injuries during sepsis through interference with TLR signaling. Therefore, genipin might be useful as a potential therapeutic agent for treatment of sepsis.  相似文献   

11.
Inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) regulate the activity of the hypothalamo-pituitary-adrenal (HPA) axis at several levels. Although hypothalamic CRH secretion may be the primary mechanism by which these cytokines activate the HPA axis, IL-1 expression is increased within the adrenal glands in models for systemic inflammation, and IL-1 may augment adrenal glucocorticoid production. Our aim was to investigate the direct effects of IL-1α and IL-1β on adrenal steroidogenesis and expression of three key steroidogenic genes in human adrenocortical cells using the NCI-H295R cell line as a model. mRNAs encoding receptors for IL-1, TNF-α, and leukemia inhibitory factor (LIF) were detectable in the cell line (Affymetrix microarray analysis). Both IL-1α and IL-1β increased cortisol, androstenedione, dehydroepiandrosterone and dehydroepiandrosterone sulfate production, and the accumulation of mRNAs for steroidogenic acute regulatory protein (STAR), 17α-hydroxylase/17,20-lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase 2 (HSD3B2) in these cells (P<0.05 for all). Both ILs augmented TNF-α- and LIF-induced STAR and CYP17A1 mRNA accumulation, and TNF-α-induced cortisol production (P<0.05 for all). Both ILs also increased the apoptotic index of the cells (P<0.05), which was efficiently neutralized by their specific antibodies. The IL-induced changes in the STAR, HSD3B2, and CYP17A1 protein levels were not as evident as those in the respective mRNA levels. In conclusion, the combined effect of inflammatory cytokines at the adrenal level in acute or chronic inflammatory states could significantly stimulate glucocorticoid production, and thus explain the observed discrepancy between the cortisol and ACTH concentrations sometimes seen in sepsis and chronic inflammatory states.  相似文献   

12.
13.
Growth hormone and insulin are the primary determinants for cytochrome P450 2E1 (CYP2E1) expression. The role of glucose on the induction of CYP2E1 by hypophysectomy and on the restorative effect by growth hormone was investigated in the rat liver. Western and Northern blot analyses revealed that hypophysectomy induced CYP2E1 by 5-fold at 1-4 weeks, relative to control, with a concomitant increase in CYP2E1 mRNA. Hypophysectomized rats (HXR) showed a 20% reduction in the plasma glucose level. Hypophysectomy-induced increase in the CYP2E1 mRNA was completely abolished by glucose feeding in drinking water (10%) for 7 days. Treatment of HXR with hGH (2 I.U./kg, twice a day, for 7 days) inhibited the increases in CYP2E1 protein and mRNA levels with restoration of the plasma glucose level. In contrast to the effect of human growth hormone (hGH) on CYP2E1 in HXR with free access to foods, CYP2E1 expression failed to be restored by hGH in starving HXR. However, glucose feeding of starving HXR abolished the induction of CYP2E1. Effects of hypophysectomy and hGH treatment were studied in streptozotocin-induced diabetic rats. Insulin, but not hGH, prevented an increase in CYP2E1 mRNA in diabetic rats. The hepatic CYP2E1 induction in hypophysectomized diabetic rats was inhibited by hGH treatment, indicating that the hGH effect on CYP2E1 expression did not involve insulin production. These results provide evidence that the induction of hepatic CYP2E1 by hypophysectomy may result from reduced glucose utilization, and that the effect of hGH on CYP2E1 expression may be mediated with enhanced glucose utilization, but not with insulin production.  相似文献   

14.
This study investigated the effect of dietary fish oil on systemic inflammation and hepatic injury in mice with polymicrobial sepsis. Male ICR mice were assigned to a control group (C, n=30) and a fish oil group (FO, n=30). Mice in the C group were fed a semi-purified diet with 10% soybean oil, and those in the FO group were fed a fish oil diet (2.5% fish oil+7.5% soybean oil; w/w). Three weeks later, sepsis was induced by cecal ligation and puncture (CLP), and mice were sacrificed at 0, 6 and 24 h after CLP, respectively. Results showed that compared with C group, the FO group had lower plasma levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, and nitrite at 6 and 24 h after CLP. Also, peritoneal lavage fluid concentrations of TNF-α and prostaglandin (PG) E2 were significantly lower at 24 h in the FO than in the C group. The FO group had lower myeloperoxidase activities at 6 h after CLP in various organs. Plasma aminotransferase and alanine aminotransferase activities revealed significantly decreased in the FO group. The DNA-binding activity of peroxisome proliferators-activated receptor gamma (PPARγ) and mRNA expression of I kappaB alpha (IκBα) were up-regulated while nuclear factor (NF)-κB p65 DNA-binding activity, inducible nitric oxide synthase protein expression and the concentration of nitrotyrosine were significantly decreased in the FO group in liver after CLP. These results indicate that dietary fish oil administration may attenuate systemic inflammation and up-regulate hepatic PPARγ DNA-binding activity, which may consequently have ameliorated liver injury in these septic mice.  相似文献   

15.
This study elucidated the effects of cornuside on carbon tetrachloride (CCl?)-induced hepatotoxicity. Rats were treated intraperitoneally with 0.5 mL/kg of CCl?. Sixteen h after CCl? treatment, the levels of serum aminotransferases, tumor necrosis factor-α (TNF-α), and lipid peroxidation were significantly elevated, whereas the hepatic antioxidative enzyme activities were decreased. These changes were attenuated by cornuside. Histological studies also indicated that cornuside inhibited CCl?-induced liver damage. Furthermore, the contents of hepatic nitrite, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were elevated after CCl? treatment, while cytochrome P450 2E1 (CYP2E1) expression was suppressed. Cornuside treatment inhibited the formation of liver nitrite, and reduced the overexpression of iNOS and COX-2 proteins, but restored the liver CYP2E1 content as compared with the CCl?-treated rats. Our data indicate that cornuside protects the liver from CCl?-induced acute hepatotoxicity, perhaps due to its ability to restore the CYP2E1 function and suppress inflammatory responses, in combination with its capacity to reduce oxidative stress.  相似文献   

16.
The purpose of this study was to examine the effect of short-term high fat feeding on the inflammatory response in polymicrobial sepsis. Male C57BL/6 mice at 6 weeks of age were randomized to a high-fat diet (HFD) (60% kcal fat) or control diet (CD) (16% kcal fat) for 3 weeks. After 3 weeks of feeding, sepsis was induced by cecal ligation and puncture (CLP) and animals were monitored for survival. In a separate experiment, after 3 weeks of feeding mice underwent CLP and were sacrificed at various time points thereafter. Tissue was collected for biochemical studies. Mice fed a HFD gained more weight and had a greater fat mass compared to CD-fed mice. Mice on a HFD had a lower probability of survival and more severe lung injury compared with CD-fed mice following sepsis. Myeloperoxidase (MPO) activity, an indicator of neutrophil infiltration, was increased in the lung and liver after CLP in HFD-fed mice compared with CD (P < 0.05). The plasma cytokines tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were increased in both groups after CLP, however, TNF-α and IL-6 levels were lower in HFD mice at 3 h after CLP compared with CD and consistent with lung, but not liver, messenger RNA (mRNA) expression. Leptin levels were higher in HFD-fed mice at 18 h after sepsis compared to baseline levels (P < 0.05). Polymicrobial sepsis increased hepatic nuclear factor-κB (NF-κB) activation in HFD-fed mice after CLP vs. CD-fed mice. Short duration high fat feeding increases mortality and organ injury following polymicrobial sepsis. These effects correspond to changes in NF-κB.  相似文献   

17.
The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is anti-inflammatory in a cell-based system and in animal models of endotoxemia. We have shown that PPAR-gamma gene expression is downregulated in macrophages after lipopolysaccharide (LPS) stimulation. However, it remains unknown whether hepatic PPAR-gamma is altered in sepsis and, if so, whether LPS directly downregulates PPAR-gamma. To study this, rats were subjected to sepsis by cecal ligation and puncture (CLP). Hepatic tissues were harvested at 5, 10, and 20 h after CLP. PPAR-gamma gene expression and protein levels were determined by RT-PCR and Western blot analysis, respectively. The results showed that PPAR-gamma gene expression decreased at 10 and 20 h and that its proteins levels were reduced at 20 h after CLP. PPAR-gamma levels were also decreased in animals that were administered LPS. To determine the direct effects of LPS on PPAR-gamma downregulation, LPS binding agent polymyxin B (PMB) was administered intramuscularly after CLP. The administration of PMB significantly reduced plasma levels of endotoxin, but it did not prevent the downregulation of PPAR-gamma expression. We found that circulating levels of TNF-alpha still remained significantly elevated in PMB-treated septic animals. We, therefore, hypothesize that the decrease of PPAR-gamma expression is TNF-alpha dependent. To investigate this, Kupffer cells (KCs) were isolated from normal rats and stimulated with LPS or TNF-alpha. TNF-alpha significantly attenuated PPAR-gamma gene expression in KCs. Although LPS decreased PPAR-gamma in KCs, the downregulatory effect of LPS was blocked by the addition of TNF-alpha-neutralizing antibodies. Furthermore, the administration of TNF-alpha-neutralizing antibodies to animals before the onset of sepsis prevented the downregulation of PPAR-gamma in sepsis. We, therefore, conclude that LPS downregulates PPAR-gamma expression during sepsis via an increase in TNF-alpha release.  相似文献   

18.
Studies were performed to further characterize the male-specific hepatic recombinant microsomal vitamin D 25-hydroxlase CYP2C11, expressed in baculovirus-infected insect cells, and determine whether it is also a vitamin D 24-hydroxylase. 25- and 24-hydroxylase activities were compared with those of 10 other recombinant hepatic microsomal cytochrome P-450 enzymes expressed in baculovirus-infected insect cells. Each of them 25-hydroxylated vitamin D2, vitamin D3, 1alpha-hydroxyvitamin D2 (1alphaOHD2), and 1alpha-hydroxyvitamin D3 (1alphaOHD3). CYP2C11 had the greatest activity with these substrates, except vitamin D3, which had the same activity as four of the other enzymes. The descending order of 25-hydroxylation by CYP2C11 was 1alphaOHD3 > 1alphaOHD2 > vitamin D2 > vitamin D3. Each of the recombinant cytochrome P-450 enzymes 24-hydroxylated 1alphaOHD2. CYP2C11 had the greatest activity. 24-Hydroxylation of 1alphaOHD3 was very low, and there was none with vitamin D3. Only CYP2C11 24-hydroxylated vitamin D2. Structures of vitamin D metabolites, including 24-hydroxyvitamin D2, 1,24(S)-dihydroxyvitamin D2, and 1,24-dihydroxyvitamin D3, were confirmed by HPLC and gas chromatography retention times and characteristic mass spectrometric fragmentation patterns. In male rats, hypophysectomy significantly reduced body weight, liver weight, hepatic CYP2C11 mRNA expression, and 24- and 25-hydroxylation of 1alphaOHD2. Expression of CYP2J3 and CYP2R1 mRNA did not change. In male rat hepatocytes, CYP2C11 mRNA expression and 24- and 25-hydroxylation were significantly reduced after culture for 24 h compared with uncultured cells. Expression of CYP2J3 and CYP2R1 either increased or did not change. It is concluded that CYP2C11 is a male-specific hepatic microsomal vitamin D 25-hydroxylase that hydroxylates vitamin D2, vitamin D3, 1alphaOHD2, and 1alphaOHD3. CYP2C11 is also a vitamin D 24-hydroxylase.  相似文献   

19.
20.
The hepatic cytochrome P450 (CYP450) enzyme superfamily is one of the most important drug-metabolizing enzyme systems, which is responsible for the metabolism of a large number of clinically relevant medications used in traumatic brain injury (TBI) therapy. Modification of CYP450 expression may have important influences on drug metabolism and lead to untoward effects on those with narrow therapeutic windows. However, the impact of blast-induced TBI (bTBI) on the expression of CYP450 has received little attention. The subfamilies of CYP1A, 2B, 2D, and 3A account for about 85 % of all human drug metabolism of clinical significance. Therefore, in this study, we investigated the expressions of hepatic CYP1A2, CYP2B1, CYP2D1, and CYP3A2 in rats suffering bTBI. Meanwhile, we also measured some important cytokines in serum after injury, and calculated the correlation between these cytokines and the expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2. The results showed that bTBI could significantly reduce mRNA expressions of CYP1A2, CYP2D1, and CYP3A2 at the early stage and induce the expressions from 48 h to 1 week after injury. The protein expressions of these CYP450s had all been downregulated from 24 to 48 h post- injury, and then began to elevate at 48 h after bTBI. The cytokines, IL-1β, IL-2, IL-6, and TNF-α, increased significantly in the early phase, and began to reduce at the delayed phase of bTBI. The serum levels of IL-1β, IL-6, and TNF-α but not IL-2 were significantly negative correlated with the mRNA expressions of CYP2B1 and CYP2D1 and the proteins expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2. In conclusion, our work has, for the first time, indicated that bTBI has significant impact on the expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2, which may be related to the cytokines induced by the injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号