首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both key enzymes for the glyoxylate cycle, isocitrate lyase (EC 4.1.3.1) and malate synthase (EC 4.1.3.2), were purified and characterized from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Whereas the former enzyme was copurified with the aconitase, the latter enzyme could be enriched to apparent homogeneity. Amino acid sequencing of three internal peptides of the isocitrate lyase revealed the presence of highly conserved residues. With respect to cofactor requirement and quarternary structure the crenarchaeal malate synthase might represent a novel type of this enzyme family. High activities of both glyoxylate cycle enzymes could already be detected in extracts of glucose grown cells and both increased about two-fold in extracts of acetate grown cells.  相似文献   

2.
Summary The soil yeast Trichosporon cutaneum was grown in continuous culture on phenol, acetate or glucose as sole carbon source. The activities of enzymes participating in the tricarboxylic acid cycle, glyoxylate cycle, 3-oxoadipate pathway, pentose phosphate pathway and glycolysis were determined in situ during shifts of carbon sources. Cells grown on phenol or glucose contained basal activity of the glyoxylate-cycle-specific isocitrate lyase. The derepression of the glyoxylate cycle enzymes was partly hindered in the presence of phenol but not in the presence of low levels of glucose. Phenol and glucose caused repression of isocitrate lyase. In the presence of either phenol or glucose, acetate accumulation in the medium increased. However, part of the supplied acetate was utilized simultaneously with phenol or glucose, the utilization rate of either carbon source being reduced in the presence of the other carbon source. Acetate caused repression but not inactivation of the phenol-degrading enzymes, phenol hydroxylase and catechol 1,2-dioxygenase. The simultaneous utilization of phenol and other carbon sources in continuous culture as well as the observed repression-derepression patterns of the involved enzymes reveal T. cutaneum to be an organism of interest for possible use in decontamination processes. Offprint requests to: H. Y. Neujahr Offprint requests to: H. Y. Neujahr  相似文献   

3.
In this study, the growth characteristics of Fusariumoxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F.oxysporum cells could tolerate was 0.8%w/v while glucose was consumed preferentially to acetate. The activity of isocitrate lyase was high when cells were grown on acetate and acetate plus glucose indicating an activation of the glyoxylate cycle. Investigation of the metabolic fingerprinting and footprinting revealed higher levels of intracellular and extracellular TCA cycle intermediates when F.oxysporum cells were grown on mixtures of acetate and glucose compared to growth on only glucose. Our data support the hypothesis that a higher flux through TCA cycle during acetate consumption could significantly increase the pool of NADH, resulting in the activation of succinate-propionate pathway which consumes reducing power (NADH) via conversion of succinate to propionyl-CoA and produce propionate.  相似文献   

4.
During growth on succinate, Acinetobacter calcoaceticus contains two forms of the enzyme isocitrate dehydrogenase. Addition of acetate to a lag-phase culture grown on succinate causes a dramatic increase in activity of form II of isocitrate dehydrogenase and in isocitrate lyase. Form II of isocitrate dehydrogenase may be responsible for the partition of isocitrate between the TCA cycle and the glyoxylate by-pass. This report describes the phosphorylation of the enzyme isocitrate lyase from A. calcoaceticus. This phosphorylation may be a regulatory mechanism for the glyoxylate by-pass.  相似文献   

5.
6.
Summary The utilization by yeast of two carbon sources is carried out through the operation of the glyoxylic acid cycle. Kinetic data from the isocitrate transforming enzymes suggest that the flow of isocitrate through the glyoxylic acid cycle depends upon the inhibition of the isocitrate decarboxylating enzymes. Both isocitrate dehydrogenases are inhibited by a mixture of glyoxylate + oxaloacetate, but for the reasons described in the text we consider that this inhibition is of no physiological significance. On the other hand, we have found that NADPH is a competitive inhibitor of NADP-isocitrate dehydrogenase with respect to NADP+, with a KI similar to its KM. It also produces an additive effect on the NADH-produced inhibition of NAD-isocitrate dehydrogenase. We propose NADPH as the compound that channels the utilization of isocitrate into the glyoxylic acid cycle. This is supported by the finding of an increased NADPH/NADP+ ratio in acetate grown yeast with respect to glucose grown cells.  相似文献   

7.
8.
In Escherichia coli, the branch point between the Krebs cycle and the glyoxylate bypass is regulated by the phosphorylation of isocitrate dehydrogenase (IDH). Phosphorylation inactivates IDH, forcing isocitrate through the bypass. This bypass is essential for growth on acetate but does not serve a useful function when alternative carbon sources, such as glucose or pyruvate, are also present. When pyruvate or glucose is added to a culture growing on acetate, the cells responded by dephosphorylating IDH and thus inhibiting the flow of isocitrate through the glyoxylate bypass. In an effort to identify the primary rate-limiting step in the response of IDH phosphorylation to alternative carbon sources, we have examined the response rates of congenic strains of E. coli which express different levels of IDH kinase/phosphatase, the bifunctional protein which catalyzes this phosphorylation cycle. The rate of the pyruvate-induced dephosphorylation of IDH was proportional to the level of IDH kinase/phosphatase, indicating that IDH kinase/phosphatase was primarily rate-limiting for dephosphorylation. However, the identity of the primary rate-limiting step appears to depend on the stimulus, since the rate of dephosphorylation of IDH in response to glucose was independent of the level of IDH kinase/phosphatase.  相似文献   

9.
Impairment of acetate production in Escherichia coli is crucial for the performance of many biotechnological processes. Aerobic production of acetate (or acetate overflow) results from changes in the expression of central metabolism genes. Acetyl−CoA synthetase scavenges extracellular acetate in glucose-limited cultures. Once converted to acetyl−CoA, it can be catabolized by the tricarboxylic acid cycle or the glyoxylate pathway. In this work, we assessed the significance of these pathways on acetate overflow during glucose excess and limitation. Gene expression, enzyme activities, and metabolic fluxes were studied in E. coli knock-out mutants related to the glyoxylate pathway operon and its regulators. The relevance of post-translational regulation by AceK-mediated phosphorylation of isocitrate dehydrogenase for pathway functionality was underlined. In chemostat cultures performed at increasing dilution rates, acetate overflow occurs when growing over a threshold glucose uptake rate. This threshold was not affected in a glyoxylate-pathway-deficient strain (lacking isocitrate lyase, the first enzyme of the pathway), indicating that it is not relevant for acetate overflow. In carbon-limited chemostat cultures, gluconeogenesis (maeB, sfcA, and pck), the glyoxylate operon and, especially, acetyl−CoA synthetase are upregulated. A mutant in acs (encoding acetyl−CoA synthetase) produced acetate at all dilution rates. This work demonstrates that, in E. coli, acetate production occurs at all dilution rates and that overflow is the result of unbalanced synthesis and scavenging activities. The over-expression of acetyl−CoA synthetase by cAMP−CRP-dependent induction limits this phenomenon in cultures consuming glucose at low rate, ensuring the recycling of the acetyl−CoA and acetyl−phosphate pools, although establishing an energy-dissipating substrate cycle.  相似文献   

10.
Glyoxylate cycle in Mucor racemosus.   总被引:1,自引:0,他引:1       下载免费PDF全文
The dimorphic phycomycete Mucor racemosus was grown in media containing acetate, glutamate, and peptone as carbon sources. The component enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase, were present under these conditions throughout the growth cycles. Highest specific activities for each enzyme were found in media with acetate as the carbon source. In an enriched peptone medium containing glucose, neither activity was detected until glucose was exhausted from the medium. Treatment of acetate-grown cells with glucose resulted in a rapid decline in the specific activities of both enzymes. The importance of this cycle in acetate-grown cells was indicated by the ability of itaconic acid (100 mM) to inhibit the growth of M. racemosus in acetate but not glutamate media. Itaconate was also shown to be a potent inhibitor of isocitrate lyase activity in vitro.  相似文献   

11.
Levels of several intermediary metabolites were measured in cells grown in acetate medium in order to test the hypothesis that the glyoxylate cycle is repressed by phosphoenolpyruvate (PEP). Wild-type cells had less PEP than either isocitrate dehydrogenase - deficient cells (which had greater isocitrate lyase activity than the wild type) or isocitrate dehydrogenase - deficient, citrate synthase-deficient cells (which are poorly inducible). Thus induction of the glyoxylate cycle is more complicated than a simple function of PEP concentration. No correlation between enzyme activity and the level of oxaloacetate, pyruvate, or citrate was found either. Citrate was synthesized in citrate synthase-deficient mutants, possibly via citrate lyase.  相似文献   

12.
13.
Bradyrhizobium japonicum, the nitrogen-fixing symbiotic partner of soybean, was grown on various carbon substrates and assayed for the presence of the glyoxylate cycle enzymes, isocitrate lyase and malate synthase. The highest levels of isocitrate lyase [165–170 nmol min–1 (mg protein)–1] were found in cells grown on acetate or β-hydroxybutyrate, intermediate activity was found after growth on pyruvate or galactose, and very little activity was found in cells grown on arabinose, malate, or glycerol. Malate synthase activity was present in arabinose- and malate-grown cultures and increased by only 50–80% when cells were grown on acetate. B. japonicum bacteroids, harvested at four different nodule ages, showed very little isocitrate lyase activity, implying that a complete glyoxylate cycle is not functional during symbiosis. The apparent K m of isocitrate lyase for d,l-isocitrate was fourfold higher than that of isocitrate dehydrogenase (61.5 and 15.5 μM, respectively) in desalted crude extracts from acetate-grown B. japonicum. When isocitrate lyase was induced, neither the V max nor the d,l-isocitrate K m of isocitrate dehydrogenase changed, implying that isocitrate dehydrogenase is not inhibited by covalent modification to facilitate operation of the glyoxylate cycle in B. japonicum. Received: 10 October 1997 / Accepted: 16 January 1998  相似文献   

14.
15.
The glyoxylate shunt enzymes, isocitrate lyase and malate synthase, were present at high levels in mycelium grown on acetate as sole source of carbon, compared with mycelium grown on sucrose medium. The glyoxylate shunt activities were also elevated in mycelium grown on glutamate or Casamino Acids as sole source of carbon, and in amino acid-requiring auxotrophic mutants grown in sucrose medium containing limiting amounts of their required amino acid. Under conditions of enhanced catabolite repression in mutants grown in sucrose medium but starved of Krebs cycle intermediates, isocitrate lyase and malate synthase levels were derepressed compared with the levels in wild type grown on sucrose medium. This derepression did not occur in related mutants in which Krebs cycle intermediates were limiting growth but catabolite repression was not enhanced. No Krebs cycle intermediate tested produced an efficient repression of isocitrate lyase activity in acetate medium. Of the two forms of isocitrate lyase in Neurospora, isocitrate lyase-1 constituted over 80% of the isocitrate lyase activity in acetate-grown wild type and also in each of the cases already outlined in which the glyoxylate shunt activities were elevated on sucrose medium. On the basis of these results, it is concluded that the synthesis of isocitrate lyase-1 and malate synthase in Neurospora is regulated by a glycolytic intermediate or derivative. Our data suggest that isocitrate lyase-1 and isocitrate lyase-2 are the products of different structural genes. The metabolic roles of the two forms of isocitrate lyase and of the glyoxylate cycle are discussed on the basis of their metabolic control and intracellular localization.  相似文献   

16.
For Escherichia coli, growth on acetate requires the induction of the enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase. The branch point between the glyoxylate bypass and the Krebs cycle is controlled by phosphorylation of isocitrate dehydrogenase (IDH), inhibiting that enzyme's activity and thus forcing isocitrate through the bypass. This phosphorylation cycle is catalyzed by a bifunctional enzyme, IDH kinase/phosphatase, which is encoded by aceK. We have employed random mutagenesis to isolate novel alleles of aceK. These alleles were detected by the loss of ability to complement an aceK null mutation. The products of one class of these alleles retain IDH kinase activity but have suffered reductions in IDH phosphatase activity by factors of 200 to 400. Selective loss of the phosphatase activity also appears to have occurred in vivo, since cells expressing these alleles exhibit phenotypes which are reminiscent of strains lacking IDH; these strains are auxotrophic for glutamate. Assays of cell-free extracts confirmed that this phenotype resulted from nearly quantitative phosphorylation of IDH. The availability of these novel alleles of aceK allowed us to assess the significance of the precise control which is a characteristic of the IDH phosphorylation cycle in vivo. The fractional phosphorylation of IDH was varied by controlled expression of one of the mutant alleles, aceK3, in a wild-type strain. Reduction of IDH activity to 50% of the wild-type level did not adversely affect growth on acetate. However, further reductions inhibited growth, and growth arrest occurred when the IDH activity fell to 15% of the wild-type level. Thus, although wild-type cells maintain a precise effective IDH activity during growth on acetate, this precision is not critical.  相似文献   

17.
Cell extracts of Rhodobacter capsulatus grown on acetate contained an apparent malate synthase activity but lacked isocitrate lyase activity. Therefore, R. capsulatus cannot use the glyoxylate cycle for acetate assimilation, and a different pathway must exist. It is shown that the apparent malate synthase activity is due to the combination of a malyl-coenzyme A (CoA) lyase and a malyl-CoA-hydrolyzing enzyme. Malyl-CoA lyase activity was 20-fold up-regulated in acetate-grown cells versus glucose-grown cells. Malyl-CoA lyase was purified 250-fold with a recovery of 6%. The enzyme catalyzed not only the reversible condensation of glyoxylate and acetyl-CoA to L-malyl-CoA but also the reversible condensation of glyoxylate and propionyl-CoA to beta-methylmalyl-CoA. Enzyme activity was stimulated by divalent ions with preference for Mn(2+) and was inhibited by EDTA. The N-terminal amino acid sequence was determined, and a corresponding gene coding for a 34.2-kDa protein was identified and designated mcl1. The native molecular mass of the purified protein was 195 +/- 20 kDa, indicating a homohexameric composition. A homologous mcl1 gene was found in the genomes of the isocitrate lyase-negative bacteria Rhodobacter sphaeroides and Rhodospirillum rubrum in similar genomic environments. For Streptomyces coelicolor and Methylobacterium extorquens, mcl1 homologs are located within gene clusters implicated in acetate metabolism. We therefore propose that L-malyl-CoA/beta-methylmalyl-CoA lyase encoded by mcl1 is involved in acetate assimilation by R. capsulatus and possibly other glyoxylate cycle-negative bacteria.  相似文献   

18.
Nocardia salmonicolor, grown on acetate, commercial D,L-lactate or hydrocarbon substrates, has high isocitrate lyase activities compared with those resulting from growth on other carbon sources. This presumably reflects the anaplerotic role of the glyoxylate cycle during growth on the former substrates. Amongst a variety of compounds tested, including glucose, pyruvate and tricarboxylic acid cycle intermediates, only succinate and fumarate prevented an increase in enzyme activity in the presence of acetate. When acetate (equimolar to the initial sugar concentration) was added to cultures growing on glucose, there followed de novo synthesis of isocitrated lyase and isocitrate dehydrogenase, with increases in growth rate and glucose utilization, and both acetate and glucose were metabolized simultaneously. A minute amount of acetate (40 muM) caused isocitrate lyase synthesis (a three-fold increase in activity within 3 min of addition) when added to glucose-limited continuous cultures, but even large amounts added to nitrogen-limited batch cultures were ineffective. Malonate, at a concentration that was not totally growth-inhibitory (1mM) prevented the inhibition of acetate-stimulated isocitrate lyase synthesis by succinate, but fumarate still inhibited in the presence of malonate. Phosphoenolpyruvate is a non-competitive inhibitor of the enzyme (apparent Ki 1-7 mM). The results are consistent with the induction of isocitrate or a closely related metabolite, and catabolite repression by a C-4 acid of the tricarboxylic acid cycle, possibly fumarate.  相似文献   

19.
Bakers' yeast oxidizes acetate at a high rate only after an adaptation period during which the capacity of the glyoxylate cycle is found to increase. There was apparently no necessity for the activity of acetyl-coenzyme A synthetase, the capacity of the tricarboxylic acid cycle, or the concentrations of the cytochromes to increase for this adaptation to occur. Elevation of fructose 1,6 diphosphatase occurred only when acetate oxidation was nearly maximal. Cycloheximide almost completely inhibited adaptation as well as increases in the activities of isocitrate lyase and aconitate hydratase, the only enzymes assayed. p-Fluorophenylalanine was partially effective and chloramphenicol did not inhibit at all. The presence of ammonium, which considerably delayed adaptation of the yeast to acetate oxidation, inhibited the increases in the activities of the glyoxylate cycle enzymes to different degrees, demonstrating noncoordinate control of these enzymes. Under the various conditions, the only enzyme activity increase consistently related to the rising oxygen uptake rate was that of isocitrate lyase which apparently limited the activity of the cycle.  相似文献   

20.
An analysis was made of the specific enzyme activities of the TCA and glyoxylate cycle in Thiobacillus versutus cells grown in a thiosulphate- or acetate-limited chemostat. Activities of all enzymes of the TCA cycle were detected, irrespective of the growth substrate and they were invariably lower in the thiosulphate-grown cells. Of the glyoxylate cycle enzymes, isocitrate lyase was absent but malate synthase activity was increased from 15 nmol·min-1·mg-1 protein in thiosulphate-grown cells to 58 nmol·min-1·mg-1 protein in acetate-grown cells. Suspensions of cells grown on thiosulphate were able to oxidize acetate, although the rate was 3 times lower than that observed with acetate-grown cells. The respiration of acetate was completely inhibited by 10 mM fluoroacetate or 5 mM arsenite. Partially purified citrate synthase from both thiosulphate- and acetate-grown cells was completely inhibited by 0.5 mM NADH and was insensitive to inhibition by 1 mM 2-oxoglutarate or 1 mM ATP. The specific enzyme activities of the TCA and glyoxylate cycle in T. versutus were compared with those of Pseudomonas fluorescens, an isocitrate lyase positive organism, after growth in a chemostat limited by acetate, glutarate, succinate or glutamate. The response of the various enzyme activities to a change in substrate was similar in both organisms, with the exception of isocitrate lyase.Abbreviations TCA tricarboxylic acid - DNTB 2,2-dinitro-5,5-dithiobenzoic acid - APAD acetylpyridine adenine dinucleotide - PMS phenazine methosulphate - DCPIP 2,6-dichlorophenol-indophenol - DOC dissolved organic carbon  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号