首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periodontitis is one of the main causes of tooth loss and has been confirmed as the sixth complication of diabetes. Metformin promotes the osteogenic differentiation of stem cells. Periodontal ligament stem cells (PDLSCs) are the best candidate stem cells for periodontal tissue regeneration. Herein, we aimed to identify the effects of metformin on the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro. PDLSCs were isolated by limiting dilution, and their characteristics were assessed by colony formation assay and flow cytometry. Cell counting and migration assays were used to investigate the effects of metformin on proliferation and migration. The osteogenic differentiation ability of PDLSCs was detected by alkaline phosphatase (ALP) activity and Alizarin Red S staining. Gene and protein levels of osteogenesis‐related markers were determined by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot analysis, respectively. Metformin treatment at 10 μM did not affect PDLSC proliferation, while at 50 and 100 μM, metformin time‐dependently enhanced PDLSC proliferation and significantly increased cell numbers after 5 and 7 days of stimulation (P < 0.05). In addition, 50 μM metformin exhibited a maximal effect on migration, ALP activity, and mineral deposition (P < 0.05). Furthermore, 50 μM metformin significantly upregulated the gene expression levels of ALP, BSP, OPN, OCN, and Runx2 and the protein expression of ALP and Runx2 (P < 0.05). In summary, our study confirms that metformin facilitates the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro and could be used as a new strategy for periodontal tissue regeneration.  相似文献   

2.
3.
We have evaluated the ectopic new bone formation effects of CPC (calcium phosphate cement) seeded with pBMP‐2 (plasmids containing bone morphogenetic protein‐2 gene) transfected canine bMSCs (bone marrow stromal cells) mediated by a non‐viral PEI (polyethylenimine) derivative (GenEscort? II) in nude mice. Canine bMSCs were transfected with pBMP‐2 or pEGFP (plasmids containing enhanced green fluorescent protein gene) mediated by GenEscort? II in vitro, and the osteoblastic differentiation was explored by ALP (alkaline phosphatase) staining, ARS (alizarin red S) staining and RT—qPCR (real‐time quantitative PCR) analysis. Ectopic bone formation effects of CPC/pBMP‐2 transfected bMSCs were evaluated and compared with CPC/pEGFP transfected bMSCs or CPC/untransfected bMSCs through histological, histomorphological and immunohistochemical analysis 8 and 12 weeks post‐operation in nude mice. Transfection efficiency was up ~35% as demonstrated by EGFP (enhanced green fluorescent protein) expression. ALP and ARS staining were stronger with pBMP‐2 gene transfection, and mRNA expression of BMP‐2 (bone morphogenetic protein‐2), Col 1 (collagen 1) and OCN (osteocalcin) in pBMP‐2 group was significantly up‐regulated at 6 and 9 days. Significantly higher NBV (new bone volume) was achieved in pBMP‐2 group than in the control groups at 8 and 12 weeks (P<0.05). In addition, immunohistochemical analysis indicated higher OCN expression in pBMP‐2 group (P<0.01). We conclude that CPC seeded with pBMP‐2 transfected bMSCs mediated by GenEscort? II could enhance ectopic new bone formation in nude mice, suggesting that GenEscort? II mediated pBMP‐2 gene transfer is an effective non‐viral method and CPC is a suitable scaffold for gene enhanced bone tissue engineering.  相似文献   

4.
Slow vascularization often impedes the viability and function of engineered bone replacements. Prevascularization is a promising way to solve this problem. In this study, a new process was developed by integrating microcarrier culture and coculture to fabricate pre‐vascularized bone microtissues with mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs). Initially, coculture medium and cell ratio between MSCs and HUVECs were optimized in tissue culture plates concerning cell proliferation, osteogenesis and angiogenesis. Subsequently, cells were seeded onto CultiSpher S microcarriers in spinner flasks and subjected to a two‐stage (proliferative‐osteogenic) culture process for four weeks. Both cells proliferated and functioned well in chosen medium and a 1 : 1 ratio between MSCs and HUVECs was chosen for better angiogenesis. After four weeks of culture in spinner flasks, the microtissues were formed with high cellularity, evenly distributed cells and tube formation ability. While coculture with HUVECs exerted an inhibitory effect on osteogenic differentiation of MSCs, with downregulated alkaline phosphatase activity, mineralization and gene expression of COLI, RUNX2 and OCN, this could be attenuated by employing a delayed seeding strategy of HUVECs against MSCs during the microtissue fabrication process. Conclusion: Collectively, this work established an effective method to fabricate pre‐vascularized bone microtissues, which would lay a solid foundation for subsequent development of vascularized tissue grafts for bone regeneration.  相似文献   

5.
Objectives: Enamel matrix proteins (EMPs) have been demonstrated to promote periodontal regeneration. However, effects of EMPs on human alveolar osteoblasts (hAOBs), up to now, have still been unclear. The purpose of this study was to investigate influence of EMPs on proliferation, differentiation and attachment of hAOBs in vitro. Materials and methods: EMPs were extracted using the acetic acid method, hAOBs were obtained and cultured in vitro. Cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of osteogenic markers and cell attachment were measured in the absence and in the presence of EMPs (50, 100 and 200 μg/ml). Results: EMPs increased proliferation of hAOBs; however, they inhibited ALP activity and mRNA expression of osteogenic markers (collagen I, ALP, runt‐related protein 2, osteocalcin, bone sialoprotein and osteopontin). Meanwhile, EMPs hindered hAOBs’ attachment. These effects occurred in EMPs concentration‐dependent manner. Conclusions: These results indicate that EMPs may inhibit osteoblastic differentiation and attachment to prevent ankylosis and allow other cell types to regenerate periodontal tissues.  相似文献   

6.
目的: 探讨牙源性干细胞复合微渠多孔羟基磷灰石支架(grooved porous hydroxyapatite scaffolds, HAG支架)的成骨性能,为骨缺损修复治疗提供新手段。方法: 从健康成人第三磨牙中提取牙周膜干细胞(periodontal ligament stem cells, PDLSCs)及牙髓干细胞(dental pulp stem cells, DPSCs)分别接种于HAG支架上,进行多向分化鉴定及碱性磷酸酶(alkaline phosphatase,ALP)活性测定;并通过CCK-8检测细胞增殖能力;逆转录聚合酶链反应(qRT-PCR)检测骨形态发生蛋白2(bone morphogenetic protein 2, BMP-2)、骨钙素(osteocalcin, OCN)和骨桥蛋白(osteopontin, OPN)等成骨相关基因的表达。体内研究中将搭载PDLSCs和DPSCs的HAG支架移植到裸鼠的背部皮下,8周后取材,组织切片后采用苏木精-伊红(HE)染色观察新骨形成,提取组织蛋白采用Western blot检测ALP、OCN等成骨相关蛋白的表达。结果: 体外研究中DPSCs复合HAG支架组的细胞增殖能力、ALP活性,以及成骨相关基因ALPBMP2OCN等的表达均高于PDLSCs复合HAG支架组。体内研究中HE染色显示,PDLSCs复合HAG支架组及DPSCs复合HAG支架组均较空白HAG支架组有更多细胞生长区、纤维细胞增生及骨基质形成,且DPSCs复合HAG支架组的骨基质面积更大,成纤维细胞数量更多;PDLSCs复合HAG支架组及DPSCs复合HAG支架组成骨相关蛋白的表达量均高于空白HAG组,且DPSCs复合HAG支架组中ALP蛋白表达量显著高于PDLSCs复合HAG支架组。结论: PDLSCs、DPSCs复合HAG支架在体内外均表现出良好的成骨性能,其中DPSCs复合HAG支架的成骨性能更为优异。  相似文献   

7.
Bortezomib (BZB) is a chemotherapeutic agent approved for treating multiple myeloma (MM) patients. In addition, there are several reports showing that bortezomib can induce murine mesenchymal stem cells (MSCs) to undergo osteogenic differentiation and increase bone formation in vivo. MSCs are the multipotent stem cells that have capacity to differentiate into several mesodermal derivatives including osteoblasts. Nowadays, MSCs mostly bone marrow derived have been considered as a valuable source of cell for tissue replacement therapy. In this study, the effect of bortezomib on the osteogenic differentiation of human MSCs derived from both bone marrow (BM-MSCs) and postnatal sources such as placenta (PL-MSCs) were investigated. The degree of osteogenic differentiation of BM-MSCs and PL-MSCs after bortezomib treatment was assessed by alkaline phosphatase (ALP) activity, matrix mineralization by Alizarin Red S staining and the expression profiles of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP. The results showed that 1 nM and 2 nM BZB can induce osteogenic differentiation of BM-MSCs and PL-MSCs as demonstrated by increased ALP activity, increased matrix mineralization and up-regulation of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP as compared to controls. The enhancement of osteogenic differentiation of MSCs by bortezomib may lead to the potential therapeutic applications in human diseases especially patients with osteopenia.  相似文献   

8.
9.
Kim A  Kim DH  Song HR  Kang WH  Kim HJ  Lim HC  Cho DW  Bae JH 《Cytotherapy》2012,14(3):296-305
Background aimsStromal vascular fractions (SVF) from adipose tissue have heterogeneous cell populations, and include multipotent adipose-derived stem cells. The advantages of using of SVF include the avoidance of an additional culture period, a reduced risk of extensive cell contamination, and cost-effectiveness.MethodsUnilateral 20-mm mid-diaphyseal segmental defects in rabbit ulna were treated with one of the following: polylactic glycolic acid (PLGA) scaffold alone (group 1, control), a PLGA scaffold with undifferentiated SVF cells (group 2), or a PLGA scaffold with osteogenically differentiated SVF cells (group 3). At 8 weeks after implantation, five rabbits in each treatment group were killed to assess bone defect healing by plain radiography, quantitative microcomputed tomography and histology.ResultsThe SVF cells were well grown on PLGA scaffolds and expressed type I collagen and alkaline phosphatase (ALP). The intensity of ALP and OPN gene expressions in osteogenic medium culture were increased from 14 days to 28 days. In vivo evaluations at 8 weeks showed that treatment of SVF cells with or without osteogenic differentiation resulted in more bone formation in the critically sized segmental defects than PLGA scaffold alone. Osteogenically differentiated SVF cells significantly enhanced bone healing compared with undifferentiated SVF cells.ConclusionsAdipose-derived stromal SVF showed osteogenic potential in vitro. Accordingly, SVF could provide a cell source for bone tissue engineering. However, treatment with uncultured SVF cells on bone healing was not satisfactory in the in vivo animal model.  相似文献   

10.
11.
Over the past decades, bone defects caused by illness or trauma have been the most common traumatic injuries in humans and treatment of orthopedic infections has always been a serious challenge to experts in the world. In this project, poly L-lactic acid (PLLA) nanofibrous scaffolds were synthesized as a nontoxic, eco-friendly, and cost-effective scaffold by the electrospinning technique. Then, the impact of PLLA on the cell proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSCs) was assayed in the presence and absence of donepezil hydrochloride (DH) which was prescribed in patients with Alzheimer's disease. Also, hMSCs were seeded on PLLA scaffold in the presence (PLLA-DH) and absence of 1 μg mL-1 of DH under osteogenic induction media. Osteogenic differentiation of hMSCs was assessed by specific bone-related tests including alkaline phosphatase (ALP) activity, Alizarin red and von Kossa staining, calcium content assay. Also, Osteocalcin and osteopontin were evaluated as osteogenic proteins as well as ALP, osteonectin, osteocalcin, collagen type I (Col-I) and Runx2 as osteogenic genes via immunocytochemistry (ICC) and Real-time PCR analyses. The obtained data showed the higher ALP enzyme activity and biomineralization, more intensity during von Kossa staining as well as the increase in the expression rate of osteogenic related gene and protein markers in differentiated hMSCs on PLLA-DH. In conclusion, the present study revealed that the combination of PLLA scaffold with DH provides a scope to develop a suitable matrix in bone tissue engineering applications.  相似文献   

12.
13.
14.
Horses with big bone fractures have low chance to live mainly due to the lake of a proper treatment strategy. We believe that further attempts in equine bone tissue engineering will probably be required to meet all the needs for the lesion therapies. Therefore in this study we aimed to investigate the osteogenic differentiation capacity of equine adipose-derived stem cells (e-ASCs) on nano-bioactive glass (nBGs) coated poly(l-lactic acid) (PLLA) nanofibers scaffold (nBG-PLLA). Using electrospinning technique, PLLA scaffold was prepared successfully and coated with nBGs. Fabricated nanofibers were characterized by MTT, SEM, and FTIR analyses, and then osteogenic differentiation potential of isolated e-ASCs was investigated by the most key osteogenic markers, namely Alizarin red-S, ALP, calcium content and bone related (RUNX2, Collagen I, Osteonectin, and ALP) gene markers. Our results indicated that nBGs was successfully coated on PLLA scaffold and this scaffold had no negative (p > 0.05) effect on cell growth rate as indicated by MTT assay. Moreover, e-ASCs that differentiated on nBGs-PLLA scaffold showed a higher (p < 0.05) ALP activity, more (p < 0.05) calcium content, and higher (p < 0.05) expression of bone-related genes than that on uncoated PLLA scaffold and TCPS. According to the results, a combination of bioceramics and biopolymeric nanofibers hold valuable promising potentials to use for bone tissue engineering application and regenerative medicine.  相似文献   

15.
16.
Chitosan/β-glycerophosphate/collagen (C/GP/Co) is a promising injectable scaffold in the bone tissue engineering. In this study, we prepared this scaffold and evaluated its biocompatibility and effects on the osteogenic differentiation of mesenchymal stem cells (MSCs). After fabrication, the C/GP/Co hydrogel was examined in a scanning electron microscope (SEM) and showed a porous microstructure. Its biocompatibility was assessed by cell morphology and cell viability assays. Cell morphological observations were performed by fluorescent microscope in 2D cultivation and by laser confocal scanning microscope (LCSM) in 3D cultivation, respectively. Cell viability in 2D and that in 3D cultivation were both evaluated by the Cell Counting Kit-8 (CCK-8) assay. Its effect on osteogenic differentiation of MSCs in vitro was clarified by alkaline phosphatase (ALP) activity, Alizarin Red staining, and real-time polymerase chain reaction (Real-time PCR). An additional experiment of the ectopic bone formation in nude mice was conducted to investigate its effects on osteogenic differentiation of MSCs after subcutaneous injection. The results proved that C/GP/Co hydrogel exhibited good biocompatibility and enhanced the in vitro osteogenic differentiation of MSCs. In the experiment of ectopic bone formation, this hydrogel demonstrated its capability of supporting neovascularization and differentiation of MSCs toward osteogenic lineage. Therefore, C/GP/Co hydrogel scaffold holds a great promise for the bone tissue engineering applications.  相似文献   

17.
Translational research in bone tissue engineering is essential for “bench to bedside” patient benefit. However, the ideal combination of stem cells and biomaterial scaffolds for bone repair/regeneration is still unclear. The aim of this study is to investigate the osteogenic capacity of a combination of poly(DL-lactic acid) (PDLLA) porous foams containing 5 wt% and 40 wt% of Bioglass particles with human adipose-derived stem cells (ADSCs) in vitro and in vivo. Live/dead fluorescent markers, confocal microscopy and scanning electron microscopy showed that PDLLA/Bioglass porous scaffolds supported ADSC attachment, growth and osteogenic differentiation, as confirmed by enhanced alkaline phosphatase (ALP) activity. Higher Bioglass content of the PDLLA foams increased ALP activity compared with the PDLLA only group. Extracellular matrix deposition after 8 weeks in the in vitro cultures was evident by Alcian blue/Sirius red staining. In vivo bone formation was assessed by using scaffold/ADSC constructs in diffusion chambers transplanted intraperitoneally into nude mice and recovered after 8 weeks. Histological and immunohistochemical assays indicated significant new bone formation in the 40 wt% and 5 wt% Bioglass constructs compared with the PDLLA only group. Thus, the combination of a well-developed biodegradable bioactive porous PDLLA/Bioglass composite scaffold with a high-potential stem cell source (human ADSCs) could be a promising approach for bone regeneration in a clinical setting.  相似文献   

18.
Cryopreservation of tissue engineered products by maintaining their structure and function is a prerequisite for large-scale clinical applications. In this study, we examined the feasibility of cryopreservation of tissue engineered bone (TEB) composed of osteo-induced canine bone marrow mesenchymal stem cells (cBMSCs) and partially demineralized bone matrix (pDBM) scaffold by vitrification. A novel vitreous solution named as VS442 containing 40% dimethyl-sulfoxide (DMSO), 40% EuroCollins (EC) solution and 20% basic culture medium (BCM) was developed. After being cultured in vitro for 8 days, cell/scaffold complex in VS442 was subjected to vitreous preservation for 7 days and 3 months, respectively. Cell viability, proliferation and osteogenic differentiation of cBMSCs in TEB after vitreous cryopreservation were examined with parallel comparisons being made with those cryopreserved in VS55 vitreous solution. Compared with that cryopreserved in VS55, cell viability and subsequent proliferative ability of TEB in VS442 after being rewarmed were significantly higher as detected by live/dead staining and DNA assay. The level of alkaline phosphatase (ALP) expression and osteocalcin (OCN) deposition in VS442 preserved TEB was also higher than those in the VS55 group since 3 days post-rewarm. Both cell viability and osteogenic capability of the VS55 group were found to be declined to a negligible level within 15 days post-rewarm. Furthermore, it was observed that extending the preservation of TEB in VS442 to 3 months did not render any significant effect on its survival and osteogenic potential. Thus, the newly developed VS442 vitreous solution was demonstrated to be more efficient in maintaining cellular viability and osteogenic function for vitreous cryopreservation of TEB over VS55.  相似文献   

19.
In continuation of the investigation of osteogenic potential of solvent fractions of ethanolic extract of Cissus quadrangularis (CQ), an ancient medicinal plant, most notably known for its bone-healing properties, to isolate and identify antiosteoporotic compounds. In the current study, we report the effect of hexane fraction (CQ-H) and dichloromethane fraction (CQ-D) of CQ on the differentiation and mineralization of mouse preosteoblast cell line MC3T3-E1 (subclone 4). Growth, viability, and proliferation assays revealed that low concentrations (0.1, 1, and 100 ng/ml) of both solvent fractions were nontoxic, whereas higher concentrations were toxic to the cells. Differentiation and mineralization of MC3T3-E1 with nontoxic concentrations of CQ-D and CQ-H revealed that CQ-D delayed the mineralization of MC3T3-E1 cells. However, early and enhanced mineralization was observed in cultures treated with nontoxic concentrations of CQ-H, as indicated by Von Kossa staining and expression profile of osteoblast marker genes such as osterix, Runx2, alkaline phosphatase (ALP), collagen (Col1a1), integrin-related bone sialoprotein (IBSP), osteopontin (OPN), and osteocalcin (OCN). These findings suggest CQ-H as the most efficacious solvent fraction for further investigation to isolate and identify the active compounds in CQ-H.  相似文献   

20.
Liu G  Shu C  Cui L  Liu W  Cao Y 《Cryobiology》2008,56(3):209-215
Bone marrow mesenchymal stem cells (MSCs) have become the main cell source for bone tissue engineering. It has been reported that cryopreserved human MSCs can maintain their potential for proliferation and osteogenic differentiation in vitro. There are, however, no reports on osteogenesis with cryopreserved human MSCs in vivo. The aim of this study was to determine whether cryopreservation had an effect on the proliferation capability and osteogenic differentiation of human MSCs on scaffolds in vitro and in vivo. MSCs were isolated from human bone marrow, cultured in vitro until passage 2, and then frozen and stored at −196 °C in liquid nitrogen with 10% Me2SO as cryoprotectant for 24 h. The cryopreserved MSCs were then thawed rapidly, seeded onto partially demineralized bone matrix (pDBM) scaffolds and cultured in osteogenic media containing 10 mM sodium β-glycerophosphate, 50 μM l-ascorbic acid, and 10 nM dexamethasone. Non-cryopreserved MSCs seeded onto the pDBM scaffolds were used as control groups. Scanning electronic microscopy (SEM) observation, DNA content assays, and measurements of alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were applied, and the results showed that the proliferation potential and osteogenic differentiation of MSCs on pDBM in vitro were not affected by cryopreservation. After 2 weeks of subculture, the MSCs/pDBM composites were subcutaneously implanted into the athymic mice. The constructs were harvested at 4 and 8 weeks postimplantation, and histological examination showed tissue-engineered bone formation in the pDBM pores in both groups. Based on these results, it can be concluded that cryopreservation allows human MSCs to be available for potential therapeutic use to tissue-engineer bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号