首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Progression through the cell cycle and redirection of cells towards programmed cell death (apoptosis) are tightly inter-related processes. However the requirement for tissue and cell type specificity suggests that a wide variety of mechanisms are used to achieve the same purpose. To examine this issue, we investigated cell cycle (c-myc, p53, p21/WAF) and apoptosis related (bcl-2, bcl-X(L), bax-alpha) gene expression in two cell lines of very different origin under proliferating and apoptosis-inducing conditions. Transformed human osteosarcoma cells (MG63) and non-transformed human kidney embryonal fibroblasts (293-0) were kept in culture in medium containing 10% FCS and growth arrest was induced by the addition of 50 ng/ml colcemid. Colcemid treatment caused growth arrest and elevated expression of cyclin B1 protein in both cell lines. Apoptosis was significantly elevated in both cell lines after colcemid exposure for at least one cell cycle. However the pattern of expression of cell cycle and apoptosis related genes, determined by RT-PCR, was quite different between the two cell lines during exponential growth and cell cycle arrest. Colcemid treatment did not markedly influence c-myc, p53 and p21/WAF expression in MG63 cells but did suppress c-myc and increase p21/WAF in 293-0 cells. Furthermore colcemid treated MG63 cells exhibited elevated bcl-2 and bax-alpha expression while similar treatment of 293-0 cells resulted in decreased bcl-X(L) and slightly increased bax-alpha expression. While growth arrest and apoptosis were induced in both MG63 and 293 cells following colcemid treatment, the differences in gene expression suggest that the mechanism by which these cells determine cell fate is quite different and may determine the sensitivity of different cell populations to anti-neoplastic drug therapy. The distinct patterns of gene expression should be carefully defined before mechanisms of apoptotic cell death are studied.  相似文献   

2.
3.
4.
Interleukin-6 (IL-6) and leukemia inhibitory factor (LIF), two multifunctional cytokines, recently have been identified as physiological inducers of hematopoietic cell differentiation which also induce terminal differentiation and growth arrest of the myeloblastic leukemic M1 cell line. In this work, it is shown that c-myc exhibited a unique pattern of expression upon induction of M1 terminal differentiation by LIF or IL-6, with an early transient increase followed by a decrease to control levels by 12 h and no detectable c-myc mRNA by 1 day; in contrast, c-myb expression was rapidly suppressed, with no detectable c-myb mRNA by 12 h. Vectors containing the c-myc gene under control of the beta-actin gene promoter were transfected into M1 cells to obtain M1myc cell lines which constitutively synthesized c-myc. Deregulated and continued expression of c-myc blocked terminal differentiation induced by IL-6 or LIF at an intermediate stage in the progression from immature blasts to mature macrophages, precisely at the point in time when c-myc is normally suppressed, leading to intermediate-stage myeloid cells which continued to proliferate in the absence of c-myb expression.  相似文献   

5.
Chen JP 《生理科学进展》1999,30(3):227-230
本课题研究RA538、反义c-ymc重组腺病毒对人胃癌(SGC7901)、食管癌(E C109、EC8712)、正常人胚肺2BS(2BS)及bcl-2高表达细胞第的体仙外生物学作用及其分子机制。结果显示Ad-RA538及Ad-ASc-myc对SGC7901细胞体内外均具有明显的生长抑制及凋亡诱导作用,并能抑制其c-myc、bcl-2、cyclinD1基因的表达及刺激bax基因的表达。对EC109、EC8  相似文献   

6.
A remarkable overlap was observed between the gadd genes, a group of often coordinately expressed genes that are induced by genotoxic stress and certain other growth arrest signals, and the MyD genes, a set of myeloid differentiation primary response genes. The MyD116 gene was found to be the murine homolog of the hamster gadd34 gene, whereas MyD118 and gadd45 were found to represent two separate but closely related genes. Furthermore, gadd34/MyD116, gadd45, MyD118, and gadd153 encode acidic proteins with very similar and unusual charge characteristics; both this property and a similar pattern of induction are shared with mdm2, whic, like gadd45, has been shown previously to be regulated by the tumor suppressor p53. Expression analysis revealed that they are distinguished from other growth arrest genes in that they are DNA damage inducible and suggest a role for these genes in growth arrest and apoptosis either coupled with or uncoupled from terminal differentiation. Evidence is also presented for coordinate induction in vivo by stress. The use of a short-term transfection assay, in which expression vectors for one or a combination of these gadd/MyD genes were transfected with a selectable marker into several different human tumor cell lines, provided direct evidence for the growth-inhibitory functions of the products of these genes and their ability to synergistically suppress growth. Taken together, these observations indicate that these genes define a novel class of mammalian genes encoding acidic proteins involved in the control of cellular growth.  相似文献   

7.
Glucocorticoids (GC) induce cell cycle arrest and apoptosis in lymphoblastic leukemia cells. To investigate cell cycle effects of GC in the absence of obscuring apoptotic events, we used human CCRF-CEM leukemia cells protected from cell death by transgenic bcl-2. GC treatment arrested these cells in the G1 phase of the cell cycle due to repression of cyclin D3 and c-myc. Cyclin E and Cdk2 protein levels remained high, but the kinase complex was inactive due to increased levels of bound p27(Kip1). Conditional expression of cyclin D3 and/or c-myc was sufficient to prevent GC-induced G1 arrest and p27(Kip1) accumulation but, importantly, did not interfere with the induction of apoptosis. The combined data suggest that repression of both, c-myc and cyclin D3, is necessary to arrest human leukemia cells in the G1 phase of the cell division cycle, but that neither one is required for GC-induced apoptosis.  相似文献   

8.
Induction of apoptosis in fibroblasts by c-myc protein.   总被引:288,自引:0,他引:288  
Although Rat-1 fibroblasts expressing c-myc constitutively are unable to arrest growth in low serum, their numbers do not increase in culture because of substantial cell death. We show this cell death to be dependent upon expression of c-myc protein and to occur by apoptosis. Regions of the c-myc protein required for induction of apoptosis overlap with regions necessary for cotransformation, autoregulation, and inhibition of differentiation, suggesting that the apoptotic function of c-myc protein is related to its other functions. Moreover, cells with higher levels of c-myc protein are more prone to cell death upon serum deprivation. Finally, we demonstrate that deregulated c-myc expression induces apoptosis in cells growth arrested by a variety of means and at various points in the cell cycle.  相似文献   

9.
Transforming growth factor beta1 (TGF beta 1) plays important roles in the regulation of cell growth and differentiation in both normal and malignant prostate epithelial cells. Although certain pathways have been suggested, the mechanisms responsible for the action of TGF beta 1 are not well understood. In the present study, using a human papilloma virus 16 E6/E7 immortalized prostate epithelial cell line, HPr-1, we report that TGF beta 1 was able to suppress the expression of Id-1, a helix-loop-helix (HLH) protein, which plays important roles in the inhibition of cell differentiation and growth arrest. In addition, a decrease at both Id-1 mRNA and protein expression levels was associated with TGF beta 1-induced growth arrest and differentiation, indicating that Id-1 may be involved in TGF beta 1 signaling pathway. The fact that up-regulation of p21(WAF1), one of the downstream effectors of Id-1, was observed after exposure to TGF beta 1 further indicates the involvement of Id-1 in the TGF beta 1-induced growth arrest in HPr-1 cells. However, increased expression of p27(KIP1) was also observed in the TGF beta 1-treated cells, suggesting that in addition to down-regulation of Id-1, other factors may be involved in the TGF beta 1-induced cell growth arrest and differentiation in prostate epithelial cells. Our results provide evidence for the first time that TGF beta 1 may be one of the upstream regulators of Id-1.  相似文献   

10.
Programmed cell death (PCD) or apoptosis is a common form of cellular demise during embryogenesis, tumorigenesis and clonal selection in the immune system. The bcl-2 proto-oncogene has been recently implicated as a potential physiological regulator of the PCD pathway. Gene transfer studies have shown that overexpression of bcl-2 blocks apoptosis mediated by several stimuli in cultured cell lines and promotes the survival of B and T lymphocytes in transgenic mice. However, it remains unclear whether under normal conditions bcl-2 is responsible for controlling cell death. We have investigated the role of bcl-2 in the antimembrane IgM (mIgM)-induced apoptotic death of WEHI-231 B cell lymphoma, a model that mimics clonal deletion of immature B cells by antigen. Signalling of mIgM receptors triggered downregulation of both bcl-2 RNA and protein, and induced apoptosis in WEHI-231 B cells. This effect appeared to be specific since (i) the levels of beta 2-microglobulin and beta-actin RNA remain unchanged and (ii) signalling of the apoptosis-resistant B cell lymphoma line BAL-17 with anti-mu was not associated with downregulation of bcl-2 RNA. However, stable expression of bcl-2 by transfection did not rescue WEHI-231 B cells from apoptosis, yet WEHI-231 cells overexpressing bcl-2 were more resistant to programmed cell death induced by heat-shock.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Suppression of apoptosis has been implicated as a mechanism for the hepatocarcinogenicity of the peroxisome proliferator class of non- genotoxic carcinogens. The ability of the peroxisome proliferator nafenopin to suppress or delay the onset of liver apoptosis was investigated using primary cultures of rat hepatocytes and the Reuber hepatoma cell line FaO. 50 microM nafenopin reversibly maintained the viability of primary rat hepatocyte cultures which otherwise degenerated within 8 d of establishment. The maintenance of viability of hepatocyte monolayers was associated with a significant decrease in the number of cells exhibiting chromatin condensation patterns typical of apoptosis. Apoptosis could be induced in hepatocytes by administration of 5 ng/ml TGF beta 1. Co-addition of 50 microM nafenopin significantly reduced TGF beta 1-induced apoptosis by 50-60%. TGF beta 1 (1-5 ng/ml) also induced apoptosis in the FaO rat hepatoma cell line. Cell death was accompanied by detachment of FaO cells from the monolayer and detached cells exhibited chromatin condensation and non-random DNA fragmentation patterns typical of apoptosis. Co-addition of 50 microM nafenopin to TGF beta 1-treated FaO cultures significantly reduced the number of apoptotic cells detaching from the monolayer at 24 h. In contrast, nafenopin had no significant effect on FaO apoptosis induced by the DNA damaging agents etoposide and hydroxyurea. We conclude that suppression of liver cell death by apoptosis may play a role in the hepatocarcinogenicity of the peroxisome proliferators, although the extent of this protection is dependent on the nature of the apoptotic stimulus.  相似文献   

12.
The c-myb proto-oncogene is abundantly expressed in tissues of hematopoietic origin, and changes in endogenous c-myb genes have been implicated in both human and murine hematopoietic tumors. c-myb encodes a DNA-binding protein capable of trans-activating the c-myc promoter. Suppression of both of these proto-oncogenes was shown to occur upon induction of terminal differentiation but not upon induction of growth inhibition in myeloid leukemia cells. Myeloblastic leukemia M1 cells that can be induced for terminal differentiation with the physiological hematopoietic inducers interleukin-6 and leukemia inhibitory factor were genetically manipulated to constitutively express a c-myb transgene. By using immediate-early to late genetic and morphological markers, it was shown that continuous expression of c-myb disrupts the genetic program of myeloid differentiation at a very early stage, which precedes the block previously shown to be exerted by deregulated c-myc, thereby indicating that the c-myb block is not mediated via deregulation of c-myc. Enforced c-myb expression also prevents the loss in leukemogenicity of M1 cells normally induced by interleukin-6 or leukemia inhibitory factor. Any changes which have taken place, including induction of myeloid differentiation primary response genes, eventually are reversed. Also, it was shown that suppression of c-myb, essential for terminal differentiation, is not intrinsic to growth inhibition. Taken together, these findings show that c-myb plays a key regulatory role in myeloid differentiation and substantiate the notion that deregulated expression of c-myb can play an important role in leukemogenicity.  相似文献   

13.
14.
Clusterin (ApoJ) is an extracellular glycoprotein expressed during processes of tissue differentiation and regression that involve programmed cell death (apoptosis). Increased clusterin expression has also been found in tumors, however, the mechanism underlying this induction is not known. Apoptotic processes in tumors could be responsible for clusterin gene activation. Alternatively, oncogenic mutations could modulate signal transduction, thereby inducing the gene. We examined the response of the rat clusterin gene to two oncogenes, Ha-ras and c-myc, in transfected Rat1 fibroblasts. While c-myc overexpression did not modify clusterin gene activity, the Ha-ras oncogene produced a seven to tenfold repression of clusterin mRNA; this down-regulation was also observed in the presence of c-myc. Since no induction of the clusterin gene was observed by the two oncogenes, we tested the alternative mechanism involving apoptosis. Growth factor withdrawal induced apoptosis, as shown by DNA degradation and micronuclei formation in the floating cells. Concomittantly we observed a three to tenfold increase in the amount of clusterin mRNA in the adhering cells of Rat1 and the c-myc transformed cell lines, and a weaker induction in the Ha-ras transformed cell line. On the basis of our results, we suggest that clusterin gene induction in the vital cells is produced by signaling molecules that are generated by the apoptotic cells. We conclude that apoptotic processes, not oncogenic mutations, are responsible for increased clusterin expression in tumors.  相似文献   

15.
16.
It has previously been shown that deregulated c-myc blocks terminal myeloid differentiation and prematurely recruits both the Type I and II CD95/Fas apoptotic pathways, promoting an incompletely penetrant apoptotic response. In this work it is shown that deregulated expression of either mycER or mycERtrade mark variants also blocked terminal myeloid differentiation but failed to induce the apoptotic response, demonstrating that c-myc can block differentiation independent of the apoptotic response. The failure of the mycERtrade mark transgene to cause the apoptotic response is associated with reduced levels of RIP1 expression, increased Mcl-1 expression and activation of both NF-kB and Akt. In addition, deregulating expression of RIP1 in M1mycERtrade mark cells restored the apoptotic response. Thus altering c-Myc or its downstream effectors can influence the balance between apoptosis and survival, and ultimately the oncogenic potential of the c-myc oncogene. This knowledge can be exploited to manipulate the downstream effectors, such as RIP1, to promote apoptosis and drive the death of cancer cells.  相似文献   

17.
18.
Deprivation of growth factors has been shown to induce programmed cell death in many cell types, including mouse 3T3 fibroblasts. Programmed cell death (apoptosis) is an active process of self-destruction which is thought to require the expression of unique genes. Recently, the expression of cell cycle genes such as c-fos and c-myc, and re-entrance to cell cycle traverse, are thought to be necessary to induce programmed cell death. Previous work in this laboratory has shown that statin is a nonproliferation-specific nuclear protein present in the nuclei of young quiescent or senescent human fibroblasts, as well as in growth-arrested mouse 3T3 fibroblasts; we have reported that statin disappears rapidly after the blockage of growth arrest is removed and cells are allowed to resume cell cycle traverse. In this report we address the question of whether cells induced to enter the programmed cell death process also lose the expression of statin. We studied density-arrested quiescent mouse 3T3 cells, which undergo rapid cell death by apoptosis upon serum deprivation. Our results suggest that c-myc expression is induced, as previously reported in other systems of apoptotic death. Interestingly, we also find that statin indeed disappears after the induction of programmed cell death is initiated. These results further support the notion that when apoptosis is induced, cells behave as though released from replication arrest, and experience some part of the G1 phase of the cell cycle. The difference between this event and normal cell cycle traverse is that this experience of the G1 phase in the apoptotic process is an abortive one, with the end result of cell demise. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Smith GB  Mocarski ES 《Journal of virology》2005,79(23):14923-14932
Mammalian cells and viruses encode inhibitors of programmed cell death that localize to mitochondria and suppress apoptosis initiated by a wide variety of inducers. Mutagenesis was used to probe the role of a predicted alpha-helical region within the hydrophobic antiapoptotic domain (AAD) of cytomegalovirus vMIA, the UL37x1 gene product. This region was found to be essential for cell death suppression activity. A screen for proteins that interacted with the AAD of functional vMIA but that failed to interact with mutants identified growth arrest and DNA damage 45 (GADD45alpha), a cell cycle regulatory protein activated by genotoxic stress, as a candidate cellular binding partner. GADD45alpha interaction required the AAD alpha-helical character that also dictated GADD45alpha-mediated enhancement of death suppression. vMIA mutants that failed to interact with GADD45alpha were completely nonfunctional in cell death suppression, and any of the three GADD45 family members (GADD45alpha, GADD45beta/MyD118, or GADD45gamma/OIG37/CR6/GRP17) was able to cooperate with vMIA; however, none influenced cell death when introduced into cells alone. GADD45alpha was found to increase vMIA protein levels comparably to treatment with protease inhibitors MG132 and ALLN. Targeted short interfering RNA knockdown of all three GADD45 family members maximally reduced vMIA activity, and this reduction was abrogated by additional GADD45alpha. Interestingly, GADD45 family members were also able to bind and enhance cell death suppression by Bcl-xL, a member of the Bcl-2 family of cell death suppressors, suggesting a direct cooperative link between apoptosis and the proteins that regulate the DNA damage response.  相似文献   

20.
TGF beta-1 is known to be a growth inhibitor of regenerating liver, and an inducer of hepatocyte apoptosis in primary culture. However, hepatocytes can proliferate after partial hepatectomy even at high serum TGF beta-1 concentrations. In this study we used the primary cultures of rat hepatocytes for 10 days to investigate how TGF beta-1 affects proliferating hepatocytes. DNA synthesis peaked on day 8 of culture, and TGF beta-1-induced apoptosis was significantly suppressed on day 8 compared to days 2, 5, and 10. Flow-cytometric analysis revealed that hepatocytes that had incorporated BrdU were resistant to the apoptotic effect of TGF beta-1, and Northern blot analysis showed that TGF beta receptor mRNA was down-regulated on day 8. Hypoxic conditions restores TGF beta receptor mRNA expression and the lost sensitivity of proliferating hepatocyte to TGF beta-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号