首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-performance liquid chromatographic method using ion-pairing chromatography on reversed-phase C18 material with a mobile phase of acetonitrile—water (19:81, v/v) containing 5 mM 1-pentanesulfonic acid was developed for the detection and separation of the anthrapyrazole CI-941 (I) and its metabolites. After sample clean-up with solid-phase extraction, I and its metabolites were measurable at a wavelength of 491 nm. A detection limit of 5 ng/ml was achievable for I. The dicarboxylic acid derivative and the isomers of the monocarboxylic acid derivative could be separated. Application of the method to a human pharmacokinetic study showed two and four metabolites of I in serum and urine respectively.  相似文献   

2.
A sensitive, selective and reproducible reversed-phase high-performance liquid chromatographic method is described for the quantification of sotalol in human serum and urine. Sotalol and the internal standard, atenolol, were extracted from alkalinized serum and urine (pH 9.0) into 1-butanol—chloroform (20:60, v/v). The organic phase was evaporated, and to the residue was added 0.1 M sulphuric acid (serum analysis) or mobile phase (urie analysis). The mobile phase consisted of 0.01 M phosphate buffer (pH 3.2) and acetonitrile (20:80, v/v) containing 3 mM n-octylsodium sulphate. The flow-rate was 1.5 ml/min. The retention times of atenolol and sotalol were 7 and 10 min, respectively. Ultraviolet detection at 226 nm made it possible to achieve a detection limit of 0.03 μmol/l.  相似文献   

3.
Mycophenolate mofetil, a new immunosuppressant, is a morpholinoethyl ester of mycophenolic acid. A new selective, sensitive and simple high-performance liquid chromatographic method was developed for the determination of mycophenolic acid and mycophenolate mofetil in biological samples. The preparation of samples was based on liquid—liquid extraction. The compounds were separated on a CN column using acetonitrile—0.01 M phosphate buffer (1:4, v/v) as the mobile phase. UV detection was used at wavelengths 215 and 304 nm. The detection limit was 5 ng per injection volume. This method enabled pharmacokinetic and pharmacodynamic studies in humans and rats.  相似文献   

4.
A method for determining flavonoids in human plasma is presented for application to pharmacokinetic studies of two flavonoids, rhoifolin and daidzin. Isocratic reversed-phase high-performance liquid chromatography (HPLC) was used with genistin as an internal standard and solid-phase extraction using a Sep-Pak C18 cartridge. The mobile phases were acetonitrile—0.1 M ammonium acetate solution (20:80, v/v) for rhoifolin and methanol—0.1 M ammonium acetate solution (33:67, v/v) for daidzin. The detection limits on-column were 2 ng for rhoifolin and 0.5 ng for daidzin.  相似文献   

5.
A single-solvent extraction step high-performance liquid chromatographic method is described for quantitating zolpidem in rat serum microsamples (50 μl). The separation used a 2.1 mm I.D. reversed-phase OD-5-100 C18 column, 5 μm particle size with an isocratic mobile phase consisting of methanol–acetonitrile–26 mM sodium acetate buffer (adjusted to pH 2.0 with 40% phosphoric acid) containing 0.26 mM tetrabutylammonium phosphate (13:10:77, v/v/v). The detection limit was 3 ng/ml for zolpidem using an ultraviolet detector operated at 240 nm. The recovery was greater than 87% with analysis performed in 12 min. The method is simple, rapid, and applicable to pharmacokinetic studies of zolpidem after administering two intravenous bolus doses (1 and 4 mg/kg) in rats.  相似文献   

6.
An isocratic high-performance liquid chromatographic method has been developed to determine ciprofloxacin levels in chinchilla plasma and middle ear fluid. Ciprofloxacin and the internal standard, difloxacin, were separated on a Keystone ODS column (100 × 2.1 mm I.D., 5 μm Hypersil) using a mobile phase of 30 mM phosphate buffer (pH 3), 20 mM triethylamine, 20 mM sodium dodecyl sulphate—acetonitrile (60:40, v/v). The retention times were 3.0 min for ciprofloxacin and 5.2 min for difloxacin. This fast, efficient protein precipitation procedure together with fluorescence detection allows a quantification limit of 25 ng/ml with a 50 μl sample size. The detection limit is 5 ng/ml with a signal-to-noise ratio of 5:1. Recoveries (mean ± S.D., n = 5) at 100 ng/ml in plasma and middle ear fluid were 89.4 ± 1.2% and 91.4 ± 1.6%, respectively. The method was evaluated with biological samples taken from chinchillas with middle ear infections after administering ciprofloxacin.  相似文献   

7.
A method is described for the analysis of amino acids, monoamines and metabolites by high-performance liquid chromatography with electrochemical detection (HPLC–ED) from individual brain areas. The chromatographic separations were achieved using microbore columns. For amino acids we used a 100×1 mm I.D. C8, 5 μm column. A binary mobile phases was used: mobile phase A consisted of 0.1 M sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (69:24:7, v/v) and mobile phase B consisted of sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (15:45:40, v/v). The flow-rate was maintained at 150 μl/min. For monoamines and metabolites we used a 150×1 mm I.D. C18 5 μm reversed-phase column. The mobile phase consisted of 25 mM monobasic sodium phosphate, 50 mM sodium citrate, 27 μM disodium EDTA, 10 mM diethylamine, 2.2 mM octane sulfonic acid and 10 mM sodium chloride with 3% methanol and 2.2% dimethylacetamide. The potential was +700 mV versus Ag/AgCl reference electrode for both the amino acids and the biogenic amines and metabolites. Ten rat brain regions, including various cortical areas, the cerebellum, hippocampus, substantia nigra, red nucleus and locus coeruleus were microdissected or micropunched from frozen 300-μm tissue slices. Tissue samples were homogenized in 50 or 100 μl of 0.05 M perchloric acid. The precise handling and processing of the tissue samples and tissue homogenates are described in detail, since care must be exercised in processing such small volumes while preventing sample degradation. An aliquot of the sample was derivatized to form the tert.-butylthiol derivatives of the amino acids and γ-aminobutyric acid. A second aliquot of the same sample was used for monamine and metabolite analyses. The results indicate that the procedure is ideal for processing and analyzing small tissue samples.  相似文献   

8.
A high-performance liquid chromatographic method for the determination of the histamine H1-receptor antagonist cetirizine in human urine was developed. Cetirizine and the internal standard are extracted from acidified (pH 5) urine (0.5 ml) into chloroform and the organic layer is evaporated to dryness. The residue is chromatographed on a Spherisorb 5ODS-2 column using Pic A (5 mM aqueous tetrabutylammonium phosphate)—methanol—tetrahydrofuran (33:65:2, v/v) as the mobile phase with ultraviolet detection (230 nm). The calibration graph is linear from 0.1 to 10 μg/ml and using 0.5 ml of urine the detection limit is 20 ng/ml. The within-run relative standard deviation is <6% and the accuracy is within 10% of the theoretical value at concentrations between 0.1 and 10 μg/ml in urine. There is a good correlation (r = 0.99606) with a previously described capillary gas chromatographic assay.  相似文献   

9.
An improved high-performance liquid chromatography method using a diisopropyl-C14 reversed-phase column (Zorbax Bonus-RP column) and a liquid–liquid extraction technique with UV detection is presented for the analysis of pyronaridine in human whole blood and plasma. Tribasic phosphate buffer (50 mM, pH 10.3) and diethyl ether were used for liquid–liquid extraction. The mobile phase consists of acetonitrile–0.08 M potassium dihydrogen phosphate buffer (13:87, v/v) with the pH 2.8 adjusted by orthophosphoric acid. Amodiaquine was found to be a suitable internal standard for the method. The quantification limit with UV detection at 275 nm was 3 ng on-column for both plasma and blood samples. The method was applied to plasma and blood specimens from a rabbit after a single intramuscular dose of pyronaridine tetraphosphate (20 mg/kg as base). From this in vivo study, evidence was found that pyronaridine is concentrated in blood cells, with a blood:plasma ratio ranging from 4.9 to 17.8. We conclude that blood is the preferred matrix for clinical pharmacokinetic studies.  相似文献   

10.
A high-performance liquid chromatographic (HPLC) method with a detection limit of 5 ng/ml was developed for the analysis of trimethoprim in bovine serum. Trimethoprim and the internal standard, ormetoprim, under alkaline conditions, were first extracted into dichloromethane and then back-extracted into dilute sulphuric acid (0.15 M) and cleaned-up on a C18 cartridge. Trimethoprim was quantified on a C18 column using a triethylammonium acetate—acetonitrile—methanol (16:3:1, v/v/v) mobile phase at a flow-rate of 1.5 ml/min, with ultraviolet detection at 225 nm. This method was used to verify the accuracy of test responses obtained with the Brilliant Black Reduction test, a rapid screening method, for trimethoprim levels in the serum of steers treated with Trivetrin. Confirmation of the presence of trimethoprim in the sample extract was obtained by thermospray HPLC—mass spectrometry.  相似文献   

11.
An isocratic high-performance liquid chromatographic method with column switching and direct injection has been developed to determine ciprofloxacin in plasma and Mueller–Hinton broth. An on-line dilution of the sample was performed with a loading mobile phase consisting of 173 mM phosphoric acid. The analyte was retained on a LiChrocart 4-4 precolumn filled with a LiChrospher 100 RP18, 5 μm. An electric-actuated system with two six-port valves allowed a clean-up step with a mixture 20 mM phosphate buffer (pH 3.5)–methanol (97: 3, v/v) and the transfer of the analyte by a back-flush mode to a 150×4.6 mm I.D. column packed with a Kromasil C8 5 μm, using a mobile phase of 20 mM phosphate buffer (pH 3.5)–acetonitrile (85:15, v/v). Fluorescence detection allowed a quantification limit of 0.078 μg/ml with a 40-μl sample size. The method was evaluated to determine its usefulness in studying the pharmacokinetic/pharmacodynamic behaviour of ciprofloxacin in an in vitro model.  相似文献   

12.
High-performance liquid chromatographic methods were developed for the determination of azosemide and its metabolite, M1, in human plasma and urine and rabbit blood and tissue homogenates. The methods involved deproteinization of the biological samples: 2.5 volumes of acetonitrile were used for the determination of azosemide and 1 volume of saturated Ba(OH)2 and ZnSO4 for that of M1. A 50-μl aliquot of the supernatant was injected onto a C18 reversed-phase column in each instance. The mobile phases employed were 0.03 M phosphoric acid—acetonitrile (50:40, v/v) for azosemide and 0.03 M phosphoric acid/0.2 M acetic acid—acetonitrile (83:17, v/v) for M1. The flow-rate was 1.5 ml/min in both instances. The column effluent was monitored by ultraviolet detection at 240 and 236 nm for azosemide and M1, respectively. The retention times for azosemide and M1 were 6.0 and 8.3 min, respectively. The detection limits for both azosemide and M1 in both human plasma and urine were 50 ng/ml. The coefficients of variation of the assay were generally low (below 11.0%) for plasma, urine, blood and tissue homogenates. No interferences from endogenous substances or other diuretics tested were observed.  相似文献   

13.
A sensitive high-performance liquid chromatographic (HPLC) method for the quantitation of famotidine in human plasma is described. Clopamide was used as the internal standard. Plasma samples were extracted with diethyl ether to eliminate endogenous interferences. Plasma samples were then extracted at alkaline pH with ethyl acetate. Famotidine and the internal standard were readily extracted into the organic solvent. After evaporation of ethyl acetate, the residue was analysed by HPLC. The chromatographic separation was accomplished with an isocratic mobile phase consisting of acetonitrile—water (12:88, v/v) containing 20 mM disodium hydrogenphosphate and 50 mM sodium dodecyl sulphate, adjusted to pH 3. The HPLC microbore column was packed with 5 μm ODS Hypersil. Using ultraviolet detection at 267 nm, the detection limit for plasma famotidine was 5 ng/ml. The calibration curve was linear over the concentration range 5–500 ng/ml. The inter- and intra-assay coefficients of variation were found to be less than 10%. Applicability of the method was demonstrated by a bioavailability/pharmacokinetic study in normal volunteers who received 80 mg famotidine orally.  相似文献   

14.
A selective high-performance liquid chromatographic (HPLC) assay for a sigma receptor antagonist, DuP 734 (I), in rat plasma has been developed. Compound I and internal standard, XC031 (I.S.), were first extracted from plasma into an ethyl acetate—toluene mixture (3:7, v/v) and then back-extracted into freshly prepared phosphoric acid (0.03 M). Separation of I and I.S. with no interference from endogenous substances was achieved on a reversed-phase octyl column and detection was by UV at 229 nm. The mobile phase consisted of acetonitrile—glacial acetic acid—triethylamine—0.05 M ammonium acetate (670:4:2:2000, v/v). Using 0.5 ml of rat plasma for extraction, the limit of quantitation was 43 ng/ml and the assay was linear from 43 to 8536 ng/ml. The intra- and inter-day coefficients of variation ranged from 0.7 to 3.0%, and from 1.4 to 14.5%, respectively, over the entire concentration range. The accuracy was within 16.1% of the spiked concentrations. I was stable in frozen plasma at −20°C for at least 68 days.  相似文献   

15.
A sensitive, quantitative reversed-phase high-performance liquid chromatographic method has been established for the simultaneous determination of butorphanol, a synthetic opioid, and its metabolites, hydroxybutorphanol and norbutorphanol, in human urine samples. The method involved extraction of butorphanol, hydroxybutorphanol, and norbutorphanol from urine (1.0 ml), buffered with 0.1 ml of 1.0 M ammonium acetate (pH 6.0), onto 1-ml Cyano Bond Elut columns. The eluent was evaporated under nitrogen and low heat, and reconstituted with the HPLC mobile phase, acetonitrile—methanol—water (20:10:70, v/v/v), containing 10 mM ammonium acetate and 10 mM TMAH (pH 5.0). The samples were chromatographed on a reversed-phase octyl 5-μm column. The analysis was accomplished by detection of the fluorescence of the three analytes, at excitation and emission wavelengths of 200 nm and 325 nm, respectively. The retention times for hydroxybutorphanol, norbutorphanol, the internal standard, and butorphanol were 5.5, 9.0, 13.0, and 23.4 min respectively. The validated quantitation range of the method was 1–100 ng/ml for butorphanol and hydroxybutorphanol, and 2–200 ng/ml for norbutorphanol in urine. The observed recoveries for butorphanol, hydroxybutorphanol, and norbutorphanol were 93%, 72%, and 50%, respectively. Standard curve correlation coefficients of 0.995 or greater were obtained during validation experiments and analysis of study samples. The method was applied on study samples from a clinical study of butorphanol, providing a pharmacokinetic profiling of butorphanol.  相似文献   

16.
An effective gradient high-performance liquid chromatographic method for baseline separation of urinary 2-thiothiazolidine-4-carboxylic acid (TTCA), with photodiode array detection at 271 nm was described. o-Methylhippuric acid was used as an internal standard (I.S.). A 1-ml urine sample was saturated with 300 mg of sodium sulphate, acidified with 100 μl of 6 M hydrochloric acid, extracted twice with 2 ml of diethyl ether, and after evaporation, the residue was taken up in 1 ml of 0.1% (v/v) phosphoric acid. The two mobile phases used for gradient elution were: (A) 10 mM ammonium dihydrogenphosphate (pH 3.5) and (B) same concentration of buffer but containing 20% (v/v) of methanol (pH 4.8). The flow-rate was set at 1.0 ml/min. TTCA and I.S. were detected at 2.2 and 9.1 min, respectively. The method was validated with urine samples collected from normal subjects and workers occupationally exposed to carbon disulphide. The present method enables the detection of urinary TTCA at a concentration of 0.025 mg/l. Analytical recovery and reproducibility generally exceeded 90%. The proposed method is considered more sensitive, specific and reliable than other existing methods.  相似文献   

17.
A rapid, sensitive, precise and accurate high-performance liquid chromatographic assay with coulometric electrochemical detection was developed for the determination of morphine in human, rabbit, pig and dog plasma. It includes a one-step extraction procedure with hexane–isoamyl alcohol (1:1, v/v) at pH 8.9 (adjusted with phosphoric acid) and reversed-phase liquid chromatography on a μPorasil column. The mobile phase was composed of 5 mM sodium acetate buffer (pH 3.75)–acetonitrile (25:75, v/v). A flow-rate of 1.2 ml/min at 20°C was used. The working potentials for the electrochemical detector were +0.20 V for detector cell 1, +0.55 V for detector cell 2 and +0.75 V for the guard cell. The limit of detection of morphine was 100 pg/ml of plasma. Repeatability, precision and accuracy were also determined concomitantly. The calibration graphs were linear in the concentration range 0.25–250 ng/ml with correlation coefficients of 0.998±0.01 and with a minimum intercept of 0.05±0.08. The precision in plasma was acceptable, with coefficients of variation less than 11%. The absolute recoveries of morphine and nalbuphine (internal standard) were between 86 and 89% and independent of morphine concentration. Pharmacokinetics after oral morphine [MST Continus™ (morphine sulphate tablets) 30 mg, Bard Pharmaceutical, Cambridge, UK] in humans revealed a one-compartment first-order absorption model with one absorption phase and one elimination phase. The absorption and elimination half-lives were 2.46 and 1.80 h, respectively. Pharmacokinetics after intravenous morphine (3 mg/kg) in rabbits showed a linear two-compartment open model with one distribution phase and one elimination phase. The distribution and elimination half-lives were 0.5 and 33.8 h, respectively.  相似文献   

18.
A simple procedure for the simultaneous determination of modafinil, its acid and sulfone metabolites in plasma is described. The assay involved an extraction of the drug, metabolites and internal standard from plasma with a solid-phase extraction using C18 cartridges. These compounds were eluted by methanol. The extract was evaporated to dryness at 40°C under a gentle stream of nitrogen. The residue was redissolved in 250 μl of mobile-phase and a 30 μl aliquot was injected via an automatic sampler into the liquid chromatograph and eluted with the mobile-phase (26%, v/v acetonitrile in 0.05 M orthophosphoric acid buffer adjusted to pH 2.6) at a flow-rate of 1.1 ml/min on a C8 Symmetry cartridge column (5 μm, 150 mm×3.9 mm, Waters) at 25°C. The eluate was detected at 225 nm. Intra-day coefficients of variation ranged from 1.0 to 2.9% and inter-day coefficients from 0.9 to 6.1%. The limits of detection and quantitation of the assay were 0.01 μg/ml and 0.10 μg/ml respectively.  相似文献   

19.
A high-performance liquid chromatographic method for the quantitation of finasteride in human plasma is presented. The method is based on liquid–liquid extraction with hexane–isoamylalcohol (98:2, v/v) and reversed-phase chromatography with spectrophotometric detection at 210 nm. The mobile phase consists of acetonitrile–15 mM potassium dihydrogenphosphate (40:60, v/v). Clobazam is used as the internal standard. The limit of quantitation is 4 ng/ml and the calibration curve is linear up to 300 ng/ml. Within-day and between-day precision expressed by relative standard deviation is less than 5% and inaccuracy does not exceed 8%. The assay was used for pharmacokinetic studies.  相似文献   

20.
A high-performance liquid chromatographic method for the determination of the anthelmintic nitroxynil has been developed. The drug was extracted from cattle muscle tissue with 1% triethylamine in acetonitrile. The extract was evaporated to dryness and taken up in 0.1 M ammonium acetate—acetonitrile (50:50, v/v). The extract was then injected onto a polymeric anion-exchange precolumn. After clean-up with 0.1 M ammonium acetate—acetonitrile (50:50, v/v) for 5 min, the precolumn was eluted with 1% aqueous trifluoroacetic acid—acetonitrile (50:50, v/v) onto a PLRP-S polymer column and chromatographed with a mobile phase of 0.01 M phosphate pH 7—acetonitrile (80:20, v/v). Detection was by ultraviolet at 273 nm. Average recoveries at four levels from 0.005 to 1.000 mg kg−1 were > 88%. The limit of determination was 0.005 mg kg−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号