首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Bone marrow mesenchymal stem cells(BMSCs) have the ability of self-renewal and multi-directional differentiation.Recent reports showed that BMSCs could differentiate into endocrine cells of pancreas.However,the differentiation is not efficient enough to produce insulin-producing cells for the future therapeutic use.Pdx-1 is a crucial regulator for pancreatic development.Therefore we constructed a eukaryotic expression vector containing Pdx-1 to determine the effect of Pdx-1 ex-pression on differentiation of BMSCs in vitro.The results showed that BMSCs could self-assemble to form functional pancreatic islet-like structures after differentiation in vitro.The proportion of insu-lin-producing cells differentiated from Pdx-1 BMSCs was 28.23%±2.56%,higher than that from BMSCs transfected with vacant vector and Pdx-1-BMSCs(7.23%±1.56% and 4.08%±2.69% respec-tively) by flow cytometry.Immunocytochemical examination also testified the expression of multiple β-cells-specific genes such as insulin,glucagons,somatostatin in differentiated BMSCs.The results also revealed that the expressions of genes mentioned above in Pdx-1 BMSCs were higher than that in Pdx-1-BMSCs,which was confirmed by Western blotting analysis and RT-PCR.Glucose-induced insulin secretion from Pdx-1 BMSCs in 5mmol/L and 25mmol/L glocuse was(56.61±4.82) μU/mL and(115.29±2.56) μU/mL respectively,which were much higher than those from Pdx-1-BMSCs((25.53±6.49) μU/mL and(53.26±7.56) μU/mL respectively) .Grafted animals were able to maintain their body weight and survive for relatively longer periods of time than hyperglycemic sham-grafted controls,which demonstrated an overall beneficial effect of the grafted cells on the health of the animals.These findings thus suggested that exogenous expression of Pdx-1 should provide a promising approach for efficiently producing islet-like cells from BMSCs for the future therapeutic use in diabetic patients.  相似文献   

4.
The intracellular signaling events controlling human mesenchymal stem cell (hMSC) differentiation into osteoblasts are poorly understood. Collagen-binding domain is considered an essential component of bone mineralization. In the present study, we investigated the regulatory mechanism of osteoblastic differentiation of hMSC by the peptide with a novel collagen-binding motif derived from osteopontin. The peptide induced influx of extracellular Ca2+ via calcium channels and increased intracellular Ca2+ concentration ([Ca2+]i) independent of both pertussis toxin and phospholipase C, and activated ERK, which was inhibited by Ca2+/calmodulin-dependent protein kinase (CaMKII) antagonist, KN93. The peptide-induced increase of [Ca2+]i is correlated with ERK activation in a various cell types. The peptide stimulated the migration of hMSC but suppressed cell proliferation. Furthermore, the peptide increased the phosphorylation of cAMP-response element-binding protein, leading to a significant increase in the transactivation of cAMP-response element and serum response element. Ultimately, the peptide increased AP-1 transactivation, c-jun expression, and bone mineralization, which are suppressed by KN93. Taken together, these results indicate that the novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/CaMKII/ERK/AP-1 signaling pathway in hMSC, suggesting the potential application in cell therapy for bone regeneration.  相似文献   

5.
The osteogenic growth peptide (OGP) is a naturally occurring tetradecapeptide that has attracted considerable clinical interest as a bone anabolic agent and hematopoietic stimulator. In vitro studies have demonstrated that OGP directly regulates the bone marrow mesenchymal stem cells' (BMSCs) differentiation into osteoblasts. However, the exact mechanism of this process remains unknown. In the present study, we investigated the role of RhoA/ROCK signaling in differentiation along this lineage using human BMSCs. OGP treatment increased the mRNA level of bone morphogenetic protein-2 and alkaline phosphatase activity after osteogenic induction. Analysis of BMSCs induced in the presence of OGP revealed an increase in RhoA activity, and phosphorylation of FAK and cofilin. The ROCK-specific inhibitors, Y27632, blocked the OGP-induced regulation of BMSC differentiation. Taken together, these data suggest that OGP not only acts on BMSCs to stimulate osteogenic differentiation, but also in a dose-dependent manner, and this effect is mediated via the activation of RhoA/ROCK pathway.  相似文献   

6.
Bone marrow mesenchymal stem cells (BMSCs) have the ability of self-renewal and multi-directional differentiation. Recent reports showed that BMSCs could differentiate into endocrine cells of pancreas. However, the differentiation is not efficient enough to produce insulin-producing cells for the future therapeutic use. Pdx-1 is a crucial regulator for pancreatic development. Therefore we constructed a eukaryotic expression vector containing Pdx-1 to determine the effect of Pdx-1 expression on differentiation of BMSCs in vitro. The results showed that BMSCs could self-assemble to form functional pancreatic islet-like structures after differentiation in vitro. The proportion of insulin-producing cells differentiated from Pdx-1+BMSCs was 28.23%±2.56%, higher than that from BMSCs transfected with vacant vector and Pdx-1 BMSCs (7.23%±1.56% and 4.08%±2.69% respectively) by flow cytometry. Immunocytochemical examination also testified the expression of multiple β-cells-specific genes such as insulin, glucagons, somatostatin in differentiated BMSCs. The results also revealed that the expressions of genes mentioned above in Pdx-1+BMSCs were higher than that in Pdx-1BMSCs, which was confirmed by Western blotting analysis and RT-PCR. Glucose-induced insulin secretion from Pdx-1+BMSCs in 5mmol/L and 25mmol/L glocuse was (56.61±4.82) μU/mL and (115.29±2.56) μU/mL respectively, which were much higher than those from Pdx-1BMSCs((25.53±6.49) μU/mL and (53.26±7.56) μU/mL respectively). Grafted animals were able to maintain their body weight and survive for relatively longer periods of time than hyperglycemic sham-grafted controls, which demonstrated an overall beneficial effect of the grafted cells on the health of the animals. These findings thus suggested that exogenous expression of Pdx-1 should provide a promising approach for efficiently producing islet-like cells from BMSCs for the future therapeutic use in diabetic patients.  相似文献   

7.
It has been shown that extremely low-frequency electromagnetic fields (ELFMF) affect regulation of cell fate and differentiation. Thus, the aim of this study was to investigate the role of ELFMFs in the enhancement of astrocytic differentiation. ELFMF exposure reduced the rate of proliferation and enhanced astrocytic differentiation. The ELFMF-treated cells showed increased levels of the astrocyte marker (GFAP), while those of the early neuronal marker (Nestin) and stemness marker (OCT3/4) were downregulated. The reactive oxygen species (ROS) level was observed to be significantly elevated after ELFMF exposure, which strengthens the modulatory role of SIRT1 and SIRT1 downstream molecules (TLE1, HES1, and MASH1) during astrocytic differentiation. After nicotinamide (5 mM) mediated inhibition of SIRT1, levels of TLE1, HES1, and MASH1 were examined; TLE1 was significantly upregulated and MASH1 was downregulated. These results suggest that ELFMFs induce astrocytic differentiation through activation of SIRT1 and SIRT1 downstream molecules.  相似文献   

8.
The objective of the study was to evaluate differentiation of human bone marrow mesenchymal stem cells into true or pseudo neurons after treating with chemical induction medium in vitro. The morphological changes were assessed using interference contrast microscopy. Immunocytochemistry and Western blotting were performed using neuronal markers. Further evaluation was conducted with proteomic profiling, DNA microarray analysis and the whole-cell patch clamp test. After three hours of treatment with chemical induction medium, nearly three-fourths of the hMSCs changed to cells with a neuronal phenotype. The results of immunocytochemistry and Western blotting showed a high expression of neuronal markers in these cells at 3 h which decreased at 24 h. The proteomics analysis showed no change of proteins related to neuronal differentiation. DNA microarray showed downregulation of neuron related genes. The patch clamp test was unable to demonstrate any similarity to true neurons. Our findings suggest that neuron-like cells derived from chemical induction of hMSCs are not the genuine neurons as they resemble true neurons phenotypically but are different in genotypic and electrophysiological characteristics.  相似文献   

9.
Granulocyte-Macrophage colony stimulating factor (GM-CSF) and Granulocyte colony stimulating factor (G-CSF) are cytokines involved in the differentiation of bone marrow progenitor cells into myeloid cells. They also activate mature myeloid cells to mediate a variety of antimicrobial activities and inflammatory responses. Recombinant GM-CSF and G-CSF proteins have been used to treat various diseases including cancer and hematopoietic diseases and to isolate peripheral blood progenitor cells for bone marrow transplantation. A plasmid construct expressing recombinant human G-CSF/GM-CSF fusion protein has now been prepared by linking the human G-CSF and GM-CSF coding regions and the recombinant fusion protein has been successfully expressed in E. coli. The recombinant human G-CSF/GM-CSF fusion protein was extracted and purified from the cellular inclusion and refolded into the biologically active form to show colony stimulating activity. The recombinant fusion protein exhibited colony stimulating activity on human bone marrow cell cultures, indicating that the linkage of GM-CSF and G-CSF by a linker peptide may not interrupt activities of the cytokines in the fusion protein. The colony forming unit of the fusion protein was also higher than those of the cultures treated with the same molar numbers of the recombinant human GM-CSF and G-CSF separately, which suggests that the fusion protein presumably retains both G-CSF and GM-CSF activities.  相似文献   

10.
The matrix remodeling associated 7 (MXRA7) gene had been ill-studied and its biology remained to be discovered. Inspired by our previous findings and public datasets concerning MXRA7, we hypothesized that the MXRA7 gene might be involved in bone marrow mesenchymal stem cells (BMSCs) functions related to bone formation, which was checked by utilizing in vivo or in vitro methodologies. Micro-computed tomography of MXRA7-deficient mice demonstrated retarded osteogenesis, which was reflected by shorter femurs, lower bone mass in both trabecular and cortical bones compared with wild-type (WT) mice. Histology confirmed the osteopenia-like feature including thinner growth plates in MXRA7-deficient femurs. Immunofluorescence revealed less osteoblasts in MXRA7-deficient femurs. Polymerase chain reaction or western blot analysis showed that when WT BMSCs were induced to differentiate toward osteoblasts or adipocytes in culture, MXRA7 messenger RNA or protein levels were significantly increased alongside osteoblasts induction, but decreased upon adipocytes induction. Cultured MXRA7-deficient BMSCs showed decreased osteogenesis upon osteogenic differentiation induction as reflected by decreased calcium deposition or lower expression of genes responsible for osteogenesis. When recombinant MXRA7 proteins were supplemented in a culture of MXRA7-deficient BMSCs, osteogenesis or gene expression was fully restored. Upon osteoblast induction, the level of active β-catenin or phospho-extracellular signal-regulated kinase in MXRA7-deficient BMSCs was decreased compared with that in WT BMSCs, and these impairments could be rescued by recombinant MXRA7 proteins. In adipogenesis induction settings, the potency of MXRA7-deficient BMSCs to differentiate into adipocytes was increased over the WT ones. In conclusion, this study demonstrated that MXRA7 influences bone formation via regulating the balance between osteogenesis and adipogenesis in BMSCs.  相似文献   

11.
The key signaling networks regulating bone marrow mesenchymal stem cells (BMSCs) are poorly defined. Lgr4, which belongs to the leucine-rich repeat-containing G protein-coupled receptor (LGR) family, is widely expressed in multiple tissues from early embryogenesis to adulthood. We investigated whether Lgr4 functions in BMSCs and in osteogenesis, adipogenesis, and skeletal myoblasts, using mice with a β-geo gene trap inserted into the Lgr4 gene. Abundant Lgr4 expression was detected in skeletal, adipose and muscular tissue of Lgr4+/– mice at E16.5 by β-gal staining, and Lgr4-deficiency promoted BMSC proliferation (16 ± 4 in wild-type [WT] and 28 ± 2 in Lgr4−/−) using colony forming units-fibroblast assay, while suppressing BMSC migration (from 103 ± 18 in WT to 57 ± 10 in Lgr4−/−) by transwell migration assay and apoptosis ratio (from 0.0720 ± 0.0123 to 0.0189 ± 0.0051) by annexin V staining assay. Deletion of Lgr4 decreased bone mass (BV/TV from 19.16 ± 2.14 in WT mice to 10.36 ± 1.96 in KO) and fat mass through inhibiting BMSC differentiation to osteoblasts or adipocytes. Furthermore, LGR4-regulated osteogenic, adipogenic, and myogenic gene expression. Importantly, our data showed that loss of Lgr4-inhibited fracture healing by suppressing osteoblast differentiation. Moreover, deletion of Lgr4 in BMSCs-delayed fracture healing following stem cell therapy by BMSC transplantation. Together, our results demonstrated that LGR4 is essential for mesoderm-derived tissue development and BMSC differentiation, demonstrating that LGR4 could be a promising drug target for related diseases and a critical protein for stem cell therapy.  相似文献   

12.
13.
14.
15.
Transforming growth factor-beta 1 (TGF-beta 1) has been implicated in a variety of responses associated with wound healing and inflammation. Thus, TGF-beta 1 enhances production of several extracellular matrix proteins both in vitro and in vivo, is chemotactic for monocytes, and alters the functioning of lymphocytes. We have examined the ability of TGF-beta 1 to affect the behavior of human THP-1 promonocytic leukemia cells, a cell line with the capacity to differentiate into macrophage-like cells. TGF-beta 1 reduces the growth rate of these cells, induces morphologic changes, and promotes adherence to culture surfaces. In addition, the adherent cell population expresses high levels of esterase activity, acquires the ability to ingest latex beads, and releases elevated levels of interleukin 1. TGF-beta 1-treated cells also express elevated levels of the beta 2 family of integrins. Taken together, these results suggest that TGF-beta 1 is capable of promoting the maturation of promonocytic cells into macrophages. This outcome has implications at wound sites where TGF-beta 1 and a myriad of other factors interact with many cell types to facilitate healing.  相似文献   

16.
The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.  相似文献   

17.
The ubiquitin protease pathway plays important role in human bone marrow-derived mesenchymal stem cell (hBMSC) differentiation, including osteogenesis. However, the function of deubiquitinating enzymes in osteogenic differentiation of hBMSCs remains poorly understood. In this study, we aimed to investigate the role of ubiquitin-specific protease 53 (USP53) in the osteogenic differentiation of hBMSCs. Based on re-analysis of the Gene Expression Omnibus database, USP53 was selected as a positive regulator of osteogenic differentiation in hBMSCs. Overexpression of USP53 by lentivirus enhanced osteogenesis in hBMSCs, whereas knockdown of USP53 by lentivirus inhibited osteogenesis in hBMSCs. In addition, USP53 overexpression increased the level of active β-catenin and enhanced the osteogenic differentiation of hBMSCs. This effect was reversed by the Wnt/β-catenin inhibitor DKK1. Mass spectrometry showed that USP53 interacted with F-box only protein 31 (FBXO31) to promote proteasomal degradation of β-catenin. Inhibition of the osteogenic differentiation of hBMSCs by FBXO31 was partially rescued by USP53 overexpression. Animal studies showed that hBMSCs with USP53 overexpression significantly promoted bone regeneration in mice with calvarial defects. These results suggested that USP53 may be a target for gene therapy for bone regeneration.Subject terms: Cell signalling, Mesenchymal stem cells  相似文献   

18.
The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia-inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu-induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu-induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α-dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy.  相似文献   

19.
Cementum is a calcified, avascular connective tissue that laminates the root of a tooth and plays a pivotal role in the development, homeostasis, and regeneration of a periodontal tissue. As a potential treatment for periodontal tissue defects in the patient with chronic periodontitis, much attention has been paid to tissue engineering combined with mesenchymal stem cells for regenerating periodontal tissues including cementum. However, limited information is available for the molecular factors that have impacts on the differentiation of mesenchymal stem cells into cementoblasts. Here, we focus on the effect of Wnt3a as a potential inducer and tested the effect of this protein in vitro using human bone marrow-derived mesenchymal stem cells. It was found that, when cells were cultured in an osteogenic medium containing Wnt3a, cementoblast-specific genes, such as cementum protein 1 and cementum attachment protein, as well as bone-related genes were significantly upregulated. These results suggest that Wnt3a promotes differentiation of the cells into cementoblast-like cells. Further experiments were carried out using inhibitors to gain deeper insights into molecular mechanisms underlying the observed differentiation. As a result, we conclude that Wnt3a-triggered differentiation into cementoblast-like cells is the consequence of the activation of the canonical Wnt signaling pathway with possible involvement of the non-canonical pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号