首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
The sequences and structural features of Xenopus laevis U3 small nucleolar RNA (snoRNA) necessary for pre-rRNA cleavage at sites 1 and 2 to form 18 S rRNA were assayed by depletion/rescue experiments in Xenopus oocytes. Mutagenesis results demonstrated that the putative stem of U3 domain I is unnecessary for 18 S rRNA processing. A model consistent with earlier experimental data is proposed for the structure of domain I when U3 is not yet bound to pre-rRNA. For its function in rRNA processing, a newly discovered element (5' hinge) was revealed to be important but not as critical as the 3' hinge region in Xenopus U3 snoRNA for 18 S rRNA formation. Base-pairing is proposed to occur between the U3 5' hinge and 3' hinge and complementary regions in the external transcribed spacer (ETS); these interactions are phylogenetically conserved, and are homologous to those previously described in yeast (5' hinge-ETS) and trypanosomes (3' hinge-ETS). A model is presented where the base-pairing of the 5' hinge and 3' hinge of U3 snoRNA with the ETS of pre-rRNA helps to correctly position U3 boxes A'+A for their function in rRNA processing. Like an earlier proposal for yeast, boxes A' and A of Xenopus may base-pair with 18 S sequences in pre-rRNA. We present the first direct experimental evidence in any system that box A' is essential for U3 snoRNA function in 18 S rRNA formation. The analysis of insertions and deletions indicated that the spacing between the U3 elements is important, suggesting that they base-pair with the ETS and 18 S regions of pre-rRNA at the same time.  相似文献   

2.
The loop of a stem structure close to the 5' end of the 18S rRNA is complementary to the box A region of the U3 small nucleolar RNA (snoRNA). Substitution of the 18S loop nucleotides inhibited pre-rRNA cleavage at site A(1), the 5' end of the 18S rRNA, and at site A(2), located 1.9 kb away in internal transcribed spacer 1. This inhibition was largely suppressed by a compensatory mutation in U3, demonstrating functional base pairing. The U3-pre-rRNA base pairing is incompatible with the structure that forms in the mature 18S rRNA and may prevent premature folding of the pre-rRNA. In the Escherichia coli pre-rRNA the homologous region of the 16S rRNA is also sequestered, in that case by base pairing to the 5' external transcribed spacer (5' ETS). Cleavage at site A(0) in the yeast 5' ETS strictly requires base pairing between U3 and a sequence within the 5' ETS. In contrast, the U3-18S interaction is not required for A(0) cleavage. U3 therefore carries out at least two functionally distinct base pair interactions with the pre-rRNA. The nucleotide at the site of A(1) cleavage was shown to be specified by two distinct signals; one of these is the stem-loop structure within the 18S rRNA. However, in contrast to the efficiency of cleavage, the position of A(1) cleavage is not dependent on the U3-loop interaction. We conclude that the 18S stem-loop structure is recognized at least twice during pre-rRNA processing.  相似文献   

3.
U3 small nucleolar RNA (snoRNA) is essential for rRNA processing to form 18S ribosomal RNA (rRNA). Previously, it has been shown that nucleolin is needed to load U3 snoRNA on pre-rRNA. However, as documented here, this is not sufficient. We present data that base-pairing between the U3 hinges and the external transcribed spacer (ETS) is critical for functional alignment of U3 on its pre-rRNA substrate. Additionally, the interaction between the U3 hinges and the ETS is proposed to serve as an anchor to hold U3 on the pre-rRNA substrate, while box A at the 5' end of U3 snoRNA swivels from ETS contacts to 18S rRNA contacts. Compensatory base changes revealed base-pairing between the 3' hinge of U3 snoRNA and region E1 of the ETS in Xenopus pre-rRNA; this novel interaction is required for 18S rRNA production. In contrast, base-pairing between the 5' hinge of U3 snoRNA and region E2 of the ETS is auxiliary, unlike the case in yeast where it is required. Thus, higher and lower eukaryotes use different interactions for functional association of U3 with pre-rRNA. The U3 hinge sequence varies between species, but covariation in the ETS retains complementarity. This species-specific U3-pre-rRNA interaction offers a potential target for a new class of antibiotics to prevent ribosome biogenesis in eukaryotic pathogens.  相似文献   

4.
Ribosome biogenesis in eucaryotes involves many small nucleolar ribonucleoprotein particles (snoRNP), a few of which are essential for processing pre-rRNA. Previously, U8 snoRNA was shown to play a critical role in pre-rRNA processing, being essential for accumulation of mature 28S and 5.8S rRNAs. Here, evidence which identifies a functional site of interaction on the U8 RNA is presented. RNAs with mutations, insertions, or deletions within the 5'-most 15 nucleotides of U8 do not function in pre-rRNA processing. In vivo competitions in Xenopus oocytes with 2'O-methyl oligoribonucleotides have confirmed this region as a functional site of a base-pairing interaction. Cross-species hybrid molecules of U8 RNA show that this region of the U8 snoRNP is necessary for processing of pre-rRNA but not sufficient to direct efficient cleavage of the pre-rRNA substrate; the structure or proteins comprising, or recruited by, the U8 snoRNP modulate the efficiency of cleavage. Intriguingly, these 15 nucleotides have the potential to base pair with the 5' end of 28S rRNA in a region where, in the mature ribosome, the 5' end of 28S interacts with the 3' end of 5.8S. The 28S-5.8S interaction is evolutionarily conserved and critical for pre-rRNA processing in Xenopus laevis. Taken together these data strongly suggest that the 5' end of U8 RNA has the potential to bind pre-rRNA and in so doing, may regulate or alter the pre-rRNA folding pathway. The rest of the U8 particle may then facilitate cleavage or recruitment of other factors which are essential for pre-rRNA processing.  相似文献   

5.
6.
7.
Nucleolin functions in the first step of ribosomal RNA processing.   总被引:24,自引:1,他引:23       下载免费PDF全文
H Ginisty  F Amalric    P Bouvet 《The EMBO journal》1998,17(5):1476-1486
The first processing step of precursor ribosomal RNA (pre-rRNA) involves a cleavage within the 5' external transcribed spacer. This processing requires sequences downstream of the cleavage site which are perfectly conserved among human, mouse and Xenopus and also several small nucleolar RNAs (snoRNAs): U3, U14, U17 and E3. In this study, we show that nucleolin, one of the major RNA-binding proteins of the nucleolus, is involved in the early cleavage of pre-rRNA. Nucleolin interacts with the pre-rRNA substrate, and we demonstrate that this interaction is required for the processing reaction in vitro. Furthermore, we show that nucleolin interacts with the U3 snoRNP. Increased levels of nucleolin, in the presence of the U3 snoRNA, activate the processing activity of a S100 cell extract. Our results suggest that the interaction of nucleolin with the pre-rRNA substrate might be a limiting step in the primary processing reaction. Nucleolin is the first identified metazoan proteinaceous factor that interacts directly with the rRNA substrate and that is required for the processing reaction. Potential roles for nucleolin in the primary processing reaction and in ribosome biogenesis are discussed.  相似文献   

8.
We have studied the role of the U14 small nucleolar RNA (snoRNA) in pre-rRNA methylation and processing in Xenopus oocytes. Depletion of U14 in Xenopus oocytes was achieved by co-injecting two nonoverlapping antisense oligonucleotides. Focusing on the earliest precursor, depletion experiments revealed that the U14 snoRNA is essential for 2'-O-ribose methylation at nt 427 of the 18S rRNA. Injection of U14-depleted oocytes with specific U14 mutant snoRNAs indicated that conserved domain B, but not domain A, of U14 is required for the methylation reaction. When the effect of U14 on pre-rRNA processing is assayed, we find only modest effects on 18S rRNA levels, and no effect on the type or accumulation of 18S precursors, suggesting a role for U14 in a step in ribosome biogenesis other than cleavage of the pre-rRNA. Xenopus U14 is, therefore, a Box C/D fibrillarin-associated snoRNA that is required for site-specific 2'-O-ribose methylation of pre-rRNA.  相似文献   

9.
Trypanosoma brucei pre-rRNA processing commences by cleavage near the 5' end of 5.8 S sequences. The 5' external transcribed spacer (5'ETS) is removed from pre-small subunit (SSU) rRNAs by sequential cleavages at internal A' and A0 sites, and A1 at the 5' end of SSU rRNA. The A' and A0 sites positionally resemble the U3 small nucleolar RNA-dependent, primary pre-rRNA cleavages of vertebrates and yeast, respectively. Uniquely in T. brucei, two U3-crosslinkable 5'ETS sites are essential for SSU rRNA production: site1b is novel in its 3' location to the A' site, and site3 lies upstream of A0 in a position analogous to the yeast U3-binding site. Here, in vivo analysis of mutated 5'ETS sequences shows that sequences 5' to the A' site are not needed for A' cleavage or SSU rRNA production. A' cleavage is linked to, but is not sufficient to trigger, downstream pre-SSU rRNA processing events. These events require an intact 11 nt sequence, 3'-adjacent to A', which directs efficient and accurate A' cleavage. Neither the A' nearby site1b nor the site3 U3-binding elements affect A' processing, yet each is required for A0 and A1 cleavage, and SSU rRNA production. The same U3 3' hinge bases evidently bind a core element, UGUu/gGGU, within site1a and site3; the U3-site1b interaction is less reliant on base-pairing than the U3-site3 interaction. As yeast U3 5' hinge bases pair to 5'ETS sequences, it is clear that distinct U3 hinge regions can interact at both novel and related 5'ETS sites to promote 3'-proximal 5'ETS processing events in diverse organisms. The T. brucei data fit a model wherein processing factors assemble at the 5'ETS site1a to affect A' cleavage and stabilize a U3-site1b complex, which may work in concert with the downstream U3-site3 complex to assist processing events leading to ribosomal SSU production.  相似文献   

10.
The first cleavage in mammalian pre-rRNA processing occurs within the 5' external transcribed spacer (ETS). We have recently shown that the U3 snRNP is required for this cleavage reaction, binds to the rRNA precursor, and remains complexed with the downstream processing product after the reaction has been completed (1). Using psoralen crosslinking in mouse cell extract we have detected a new interaction between U3 RNA and the mouse ETS processing substrate and its processed product. The crosslinked sites on both U3 and ETS RNAs have been mapped by RNase H cleavage and primer extension analyses. The crosslinked sites in U3 RNA map to C5, U6, and U8. U8 lies within and C5 and U6 are adjacent to an evolutionarily conserved U3 sequence termed box A'. In the ETS the crosslinked sites are U1012 and U1013, 362 nucleotides downstream from the processing site. Although the crosslinked site is dispensable for the primary processing reaction in vitro, a short conserved sequence just 3' to the cleavage site (nucleotides 650-668) is absolutely required for crosslink formation. We conclude that the interaction between U3 RNA and the 5' ETS detected by psoralen crosslinking may play a role in subsequent step(s) of pre-rRNA processing.  相似文献   

11.
In eukaryotes, U3 snoRNA is essential for pre-rRNA maturation. Its 5'-domain was found to form base pair interactions with the 18S and 5'-ETS parts of the pre-rRNA. In Xenopus laevis, two segments of U3 snoRNA form base-pair interactions with the 5'-ETS region and only one of them is essential to the maturation process. In Saccharomyces cerevisiae, two similar U3 snoRNA-5' ETS interactions are possible; but, the functional importance of only one of them had been tested. Surprisingly, this interaction, which corresponds to the non-essential one in X. laevis, is essential for cell growth and pre-rRNA maturation in yeast. In parallel with [Dutca et al. (2011) The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Research, 39, 5164-5180], here we show, that the second possible 11-bp long interaction between the 5' domain of S. cerevisiae U3 snoRNA and the pre-rRNA 5'-ETS region (helix VI) is also essential for pre-rRNA processing and cell growth. Compensatory mutations in one-half of helix VI fully restored cell growth. Only a partial restoration of growth was obtained upon extension of compensatory mutations to the entire helix VI, suggesting sequence requirement for binding of specific proteins. Accordingly, we got strong evidences for a role of segment VI in the association of proteins Mpp10, Imp4 and Imp3.  相似文献   

12.
It has long been known that U3 can be isolated hydrogen bonded to pre-ribosomal RNAs, but the sites of interaction are poorly characterized. Here we show that yeast U3 can be cross-linked to 35S pre-rRNA both in deproteinized extracts and in living cells. The sites of cross-linking were localized to the 5' external transcribed spacer (ETS) and then identified at the nucleotide level. Two regions of U3 near the 5' end are cross-linked to pre-rRNA in vivo and in vitro; the evolutionarily conserved box A region and a 10 nucleotide (nt) sequence with perfect complementarity to an ETS sequence. Two in vivo cross-links are detected in the ETS, at +470, within the region complementary to U3, and at +655, close to the cleavage site at the 5' end of 18S rRNA. A tagged rDNA construct was used to follow the effects of mutations in the ETS in vivo. A small deletion around the +470 cross-linking site in the ETS prevents the synthesis of 18S rRNA. This region is homologous to the site of vertebrate ETS cleavage. We propose that this site may be evolutionarily conserved to direct the assembly of a pre-rRNA processing complex required for the cleavages that generate 18S rRNA.  相似文献   

13.
Processing of the yeast pre-rRNA at sites A(2) and A(3) is linked.   总被引:8,自引:1,他引:8       下载免费PDF全文
Cleavage of the yeast pre-rRNA at site A(2) in internal transcribed spacer 1 (ITS1) requires multiple snoRNP species, whereas cleavage at site A(3),located 72 nt 3' in ITS1, requires Rnase MRP. Analyses of mutations in the pre- rRNA have revealed an unexpected link between processing at A(2) and A(3). Small substitution mutations in the 3' flanking sequence at A(2) inhibit processing at site A(3), whereas a small deletion at A(3) has been shown to delay processing at site A(2). Moreover, the combination of mutations in cis at both A(2) and A(3) leads to the synthesis of pre-rRNA species with 5' ends within the mature 18S rRNA sequence, at sites between + 482 and + 496. The simultaneous interference with an snoRNP processing complex at site A(2) and an Rnase MPRP complex at site A(3) may activate a pre-rRNA breakdown pathway. The same aberantpre-rRNA species are observed in strains with mutations in the RNA component of Rnase MRP, consistent with interactions between the processing complexes. Furthermore, genetic depletion of the snoRNA, snR30, has been shown to affect the coupling between cleavage by Rnase MRP and subsequent exonuclease digestion.We conclude that an sno-RNP-dependent processing complex that is required for A(2) cleavage and that recognizes the 3' flanking sequence at A(2), interacts with the RNase MRP complex bound to the pre-rRNA around site A(3).  相似文献   

14.
Mechanisms of ITS2 excision from pre-rRNA remain largely elusive. In mammals, at least two endonucleolytic cleavages are involved, which result in the transient accumulation of precursors to 5.8S rRNA termed 8S and 12S RNAs. We have sequenced ITS2 in four new species of the Mus genus and investigated its secondary structure using thermodynamic prediction and comparative approach. Phylogenetic evidence supports an ITS2 folding organized in four domains of secondary structure extending from a preserved structural core. This folding is also largely conserved for the previously available mammalian ITS2 sequences, rat and human, despite their extensive sequence divergence relative to the Mus species. Conserved structural features include the structural core, containing the 3' end of 8S pre-rRNA within a single-stranded sequence, and a stem containing the 3' end of the 12S pre-rRNA species. A putative, phylogenetically preserved pseudoknot has been detected 1 nt downstream from the 12S 3' end. Two long complementarities have also been identified, in sequences conserved among vertebrates, between the pre-rRNA 32S and the snoRNA (small nucleolar RNA) U8 which is required for the excision of Xenopus ITS2. The first complementarity involves the 5.8S-ITS2 junction and 13 nt at the 5' end of U8, whereas the other one occurs between a mature 28S rRNA segment known to be required for ITS2 excision and positions 15-25 of snoRNA U8. These two potential interactions, in combination with ITS2 folding, could organize a functional pocket containing three cleavage sites and key elements for pre-rRNA processing, suggesting a chaperone role for the snoRNA U8.  相似文献   

15.
16.
U8 small nucleolar RNA (snoRNA) is essential for metazoan ribosomal RNA (rRNA) processing in nucleoli. The sequences and structural features in Xenopus U8 snoRNA that are required for its nucleolar localization were analyzed. Fluorescein-labeled U8 snoRNA was injected into Xenopus oocyte nuclei, and fluorescence microscopy of nucleolar preparations revealed that wild-type Xenopus U8 snoRNA localized to nucleoli, regardless of the presence or nature of the 5' cap on the injected U8 snoRNA. Nucleolar localization was observed when loops or stems in the 5' portion of U8 that are critical for U8 snoRNA function in rRNA processing were mutated. Therefore, sites of interaction in U8 snoRNA that potentially tether it to pre-rRNA are not essential for nucleolar localization of U8. Boxes C and D are known to be nucleolar localization elements (NoLEs) for U8 snoRNA and other snoRNAs of the Box C/D family. However, the spatial relationship of Box C to Box D was not crucial for U8 nucleolar localization, as demonstrated here by deletion of sequences in the two stems that separate them. These U8 mutants can localize to nucleoli and function in rRNA processing as well. The single-stranded Cup region in U8, adjacent to evolutionarily conserved Box C, functions as a NoLE in addition to Boxes C and D. Cup is unique to U8 snoRNA and may help bind putative protein(s) needed for nucleolar localization. Alternatively, Cup may help to retain U8 snoRNA within the nucleolus.  相似文献   

17.
18.
The small nucleolar RNA U3 is essential for viability in yeast. We have previously shown that U3 can be cross-linked in vivo to the pre-rRNA in the 5' external transcribed spacer (ETS), at +470. This ETS region contains 10 nucleotides of perfect complementarity to U3. In a genetic background where the mutated rDNA is the only transcribed rDNA repeat, the deletion of the 10 nt complementary to U3 is lethal. Cells lacking the U3 complementary sequence in pre-rRNA fail to accumulate 18S rRNA: pre-rRNA processing is inhibited at sites A0 in the 5' ETS, A1 at the 5' end of 18S rRNA and A2 in ITS1. We show here that effects on processing at site A0 are specific for U3 and its associated proteins and are not seen on depletion of other snoRNP components. The deletion of the sequence complementary to U3 in the ETS therefore mimics all the known effects of the depletion of U3 in trans. This indicates that we have identified an essential U3 binding site on pre-rRNA, required in cis for the maturation of 18S rRNA.  相似文献   

19.
The small nucleolar RNA U3 is essential for viability in yeast. We have previously shown that U3 can be cross-linked in vivo to the pre-rRNA in the 5' external transcribed spacer (ETS), at +470. This ETS region contains 10 nucleotides of perfect complementarity to U3. In a genetic background where the mutated rDNA is the only transcribed rDNA repeat, the deletion of the 10 nt complementary to U3 is lethal. Cells lacking the U3 complementary sequence in pre-rRNA fail to accumulate 18S rRNA: pre-rRNA processing is inhibited at sites A0 in the 5' ETS, A1 at the 5' end of 18S rRNA and A2 in ITS1. We show here that effects on processing at site A0 are specific for U3 and its associated proteins and are not seen on depletion of other snoRNP components. The deletion of the sequence complementary to U3 in the ETS therefore mimics all the known effects of the depletion of U3 in trans. This indicates that we have identified an essential U3 binding site on pre-rRNA, required in cis for the maturation of 18S rRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号