首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Metabolism of ketone bodies, oleate and glucose in lymphocytes of the rat.   总被引:2,自引:1,他引:1  
Isolated incubated lymphocytes utilized acetoacetate, 3-hydroxybutyrate or oleate at about 0.5 mumol/min per g dry wt. These rates were not markedly affected by concanavalin A or by starvation of the donor animal. When ketone bodies replaced glucose in the culture medium, they could not support lymphocyte proliferation when cells were cultured for 48 h. Addition of oleate (0.5 mM) to isolated lymphocytes increased the rate of O2 consumption markedly, suggesting that it could contribute about 30% to O2 consumption. The rate of oleate uptake and the stimulated rate of O2 consumption were maximal at 0.5 M-oleate; this is in contrast with the effect in some other tissues, in which the rate of fatty acid oxidation is linear with concentration up to about 2 mM. Since the normal plasma concentration of fatty acid in the fed state is about 0.5 mM, this suggests that lymphocytes can utilize fatty acids at a maximal rate in the fed state. Ketone bodies or oleate decreased the rate of glucose utilization by incubated lymphocytes; ketone bodies decreased the rate of pyruvate oxidation and increased the intracellular concentration of hexose monophosphate and citrate, suggesting that 6-phosphofructokinase is inhibited by citrate, and hexokinase by glucose 6-phosphate. These effects may be important not so much in conserving glucose in the whole animal but in maintaining the concentrations of glycolytic intermediates necessary for biosynthetic processes during proliferation.  相似文献   

2.
1. Attempts were made to define the role of phosphofructokinase in glycolytic control and the factors regulating the concentration of l-glycerol 3-phosphate in rat epididymal fat pads incubated in vitro. 2. Glycolysis rates were altered by anoxia or by additions of insulin, adrenaline or both to the incubation medium, and the changes in rate were related to changes in the steady-state concentrations of hexose phosphates, adenine nucleotides, l-glycerol 3-phosphate and citrate in the whole tissue. Measurements were also made of the lactate/pyruvate concentration ratio in the medium after incubation. 3. The mass-action ratios of phosphofructokinase, calculated from the whole-tissue concentrations of products and substrates, were less than 0.1% of the value of the ratio at pH7.4 at equilibrium. 4. Only in the presence of adrenaline could the observed stimulation of glycolytic flux be related to a possible activation of phosphofructokinase since, in this situation, the concentration of one substrate, fructose 6-phosphate, was not altered and the concentration of the other, ATP, was decreased. Increased glycolytic flux in the presence of insulin may be explained by an observed increase in the concentration of the substrate, fructose 6-phosphate. Under anaerobic conditions, glycolytic flux was decreased but this did not appear to be the result of inhibition of phosphofructokinase, since the concentrations of both substrates, fructose 6-phosphate and ATP, were decreased. The changes in glycolytic flux with insulin and anoxia may be secondary to changes in the rate of glucose uptake. 5. Changes in l-glycerol 3-phosphate concentration appear to be related both to changes in the concentration of dihydroxyacetone phosphate and to changes in the NADH/NAD(+) concentration ratio in the cytoplasm. They do not seem to be related directly to alterations in glycolytic rate.  相似文献   

3.
1. The hepatic concentrations of the ketone bodies and of metabolites and activities of enzymes involved in gluconeogenesis were measured in healthy lactating and non-lactating cows 48h after administration of Voren, an ester of dexamethasone, and compared with those found in control animals given saline. Parallel measurements were also made of the blood concentrations of several of the metabolites. 2. Blood glucose concentrations were raised in the Voren-treated animals, whereas blood ketone body and free fatty acid concentrations were unaltered. Similarly there was no change in the hepatic concentrations of the ketone bodies. 3. Significant increases were found in the hepatic concentrations of citrate, 2-oxo-glutarate and malate in both groups of animals given Voren. 4. The hepatic concentrations of those glycolytic intermediates that were measured either decreased or did not change after Voren treatment. 5. The enzymes aspartate transaminase and fructose 1,6-diphosphatase were unchanged in activity after Voren administration, whereas phosphopyruvate carboxylase (EC 4.1.1.32) activity was depressed in the lactating group. However, glucose 6-phosphatase, tryptophan oxygenase and tyrosine aminotransferase increased in activity. 6. In several cases those hepatic metabolites that increased in concentration after Voren administration were present in lower concentration in normal lactating cows than in normal non-lactating cows. The same applied mutatis mutandis to those metabolites that were decreased by Voren. 7. These findings are discussed in relation to the use of glucocorticoids in the treatment of bovine ketosis.  相似文献   

4.
Under conditions used previously for demonstrating glycolytic oscillations in muscle extracts (pH 6.65, 0.1 to 0.5 mM ATP), phosphofructokinase from rat skeletal muscle is strongly activated by micromolar concentrations of fructose diphosphate. The activation is dependent on the presence of AMP. Activation by fructose diphosphate and AMP, and inhibition by ATP, is primarily due to large changes in the apparent affinity of the enzyme for the substrate fructose 6-phosphate. These control properties can account for the generation of glycolytic oscillations. The enzyme was also studied under conditions approximating the metabolite contents of skeletal muscle in vivo (pH 7.0, 10mM ATP, 0.1 mM fructose 6-phosphate). Under these more inhibitory conditions, phosphofructokinase is strongly activated by low concentrations of fructose diphosphate, with half-maximal activation at about 10 muM. Citrate is a potent inhibitor at physiological concentrations, whereas AMP is a strong activator. Both AMP and citrate affect the maximum velocity and have little effect on affinity of the enzyme for fructose diphosphate.  相似文献   

5.
The regulatory kinetic properties of phosphofructokinase partially purified from the livers of C57BL/KsJ mice were studied. The fructose 6-phosphate saturation curves were highly pH dependent. At a fixed MgATP concentration (1 mM), allosteric kinetics was observed in the range of pH studied (7.3 to 8.3) and the S0.5 values for fructose 6-phosphate decreased by about 0.2 to 0.3 mM for each 0.1-unit increment in pH. Allosteric effects on the sigmoidal response to fructose 6-phosphate: activation by AMP, NH4+, and glucose 1,6-bisphosphate, inhibition by MgATP2-, and synergistic inhibition between ATP and citrate, were all present at pH 8.0 to 8.2. Comparative kinetic studies with liver phosphofructokinase isolated from both the normal (C57BL/KsJ) and the genetically diabetic (C57BL/KsJ-db) mice of 9 to 10 and 15 to 16 weeks of age showed that the enzyme from the livers of diabetic mice exhibited decreased activity at subsaturating concentrations of fructose 6-phosphate. However, phosphofructokinase isolated from the livers of normal and genetically diabetic mice of 4 to 5 weeks of age showed no difference in kinetic properties. Thus, there appears to be a correlation between the change in properties of liver phosphofructokinase and the expression of hyperglycemia and obesity in the genetically diabetic mice. The decreased activity of liver phosphofructokinase in the older diabetic animals may well be one of the causes of the increased blood glucose levels. The results are also discussed in a general context with regard to the possible role of phosphofructokinase in the regulation of hepatic gluconeogenesis.  相似文献   

6.
1. The effect of acetoacetate on glucose metabolism was compared in the soleus, a slow-twitch red muscle, and the extensor digitorum longus, a muscle composed of 50% fast-twitch red and 50% white fibres. 2. When incubated for 2h in a medium containing 5 mM-glucose and 0.1 unit of insulin/ml, rates of glucose uptake, lactate release and glucose oxidation in the soleus were 19.6, 18.6 and 1.47 micronmol/h per g respectively. Acetoacetate (1.7 mM) diminished all three rates by 25-50%; however, it increased glucose conversion into glycogen. In addition, it caused increases in tissue glucose, glucose 6-phosphate and fructose 6-phosphate, suggesting inhibition of phosphofructokinase. The concentrations of citrate, an inhibitor of phosphofructokinase, and of malate were also increased. 3. Rates of glucose uptake and lactate release in the extensor digitorum longus were 50-80% of those in the soleus. Acetoacetate caused moderate increases in tissue glucose 6-phosphate and possibly citrate, but it did not decrease glucose uptake or lactate release. 4. The rate of glycolysis in the soleus was approximately five times that previously observed in the perfused rat hindquarter, a muscle preparation in which acetoacetate inhibits glucose oxidation, but does not alter glucose uptake or glycolysis. A similar rate of glycolysis was observed when the soleus was incubated with a glucose-free medium. Under these conditions, tissue malate and the lactate/pyruvate ratio in the medium were decreased, and acetoacetate did not decrease lactate release or increase tissue citrate or glucose 6-phosphate. An intermediate rate of glycolysis, which was not decreased by acetoacetate, was observed when the soleus was incubated with glucose, but not insulin. 5. The data suggest that acetoacetate glucose inhibits uptake and glycolysis in red muscle under conditions that resemble mild to moderate exercise. They also suggest that the accumulation of citrate in these circumstances is linked to the rate of glycolysis, possibly through the generation of cytosolic NADH and malate formation.  相似文献   

7.
Concentrations of citrate, hexose phosphates and glycogen were measured in skeletal muscle and heart under conditions in which plasma non-esterified fatty acids and ketone bodies were physiologically increased. The aim was to determine under what conditions the glucose-fatty acid cycle might operative in skeletal muscle in vivo. In keeping with the findings of others, starvation increased the concentrations of glycogen, citrate and the fructose 6-phosphate/fructose 1,6-bisphosphate ratio in heart, indicating that the cycle was operative. In contrast, it decreased glycogen and had no effect on the concentration of citrate or the fructose 6-phosphate/fructose 1,6-bisphosphate ratio in the soleus, a slow-twitch red muscle in which the glucose-fatty acid cycle has been demonstrated in vitro. In fed rats, exercise of moderate intensity caused glycogen depletion in the soleus and red portion of gastrocnemius muscle, but not in heart. In starved rats the same exercise had no effect on the already diminished glycogen contents in skeletal muscle, but it decreased cardiac glycogen by 25-30%. After exercise, citrate and the fructose 6-phosphate/fructose 1,6-bisphosphate ratio were increased in the soleus of the starved rat. Significant changes were not observed in fed rats. The data suggest that in the resting state the glucose-fatty acid cycle operates in the heart, but not in the soleus muscle, of a starved rat. In contrast, the metabolite profile in the soleus was consistent with activation of the glucose-fatty acid cycle in the starved rat during the recovery period after exercise. Whether the cycle operates during exercise itself is unclear.  相似文献   

8.
1. Glucose production from L-lactate was completely inhibited 24h after carbon tetrachloride treatment in liver from 48h-starved rats. The activities of phosphoenolpyruvate carboxykinase, fructose diphosphatase and glucose 6-phosphatase were decreased by this treatment in fed and starved rats, whereas lactate dehydrogenase activity was only decreased in fed animals. 2. The production of glucose by renal cortical slices from fed rats previously treated with carbon tetrachloride was enhanced when L-lactate, pyruvate and glutamine but not fructose were used as glucose precursors. Renal phosphoenolpyruvate carboxykinase activity was increased in this condition. 3. This increase was counteracted by cycloheximide or actinomycin D, suggesting that the effect was due to the synthesis de novo of the enzyme. 4. The pattern of hepatic gluconeogenic metabolites in treated animals was characterized by an increase in lactate, pyruvate, malate and citrate as well as a decrease in glucose 6-phosphate, suggesting an impairment of liver gluconeogenesis in vivo. 5. In contrast, the profile of renal metabolites suggested that gluconeogenesis was operative in the treated rats, as indicated by the marked increase in the content of phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate and glucose 6-phosphate. 6. It is postulated that renal gluconeogenesis could contribute to the maintenance of glycaemia in carbon tetrachloride-treated rats.  相似文献   

9.
Activation of both phosphofructokinase and pyruvate kinase by fructose diphosphate in liver provides a means of amplifying effects of other activators or inhibitors in controlling the rate of glycolysis. Two types of behavior can occur, depending on the choice of affinity constants of the two enzymes for fructose diphosphate in a simple model: (i) there may be a steady state corresponding to each value of the fructose diphosphate concentration, so that the glycolytic rate is continuously variable, or (ii) there may be two (or more) regions of stable steady states, separated by a zone of instability, so that the system shifts abruptly between low and high glycolytic rates at critical concentrations of fructose diphosphate. A low glycolytic rate corresponds to net gluconeogenesis when the gluconeogenic enzymes are included. Calculations from data from perfused liver support the proposal that the free fructose diphosphate concentration is a major factor controlling glycolysis in liver and amplifying the effect of changes in the fructose 6-phosphate concentration which occur in response to variation in the glucose concentration.  相似文献   

10.
Ketone-body metabolism in tumour-bearing rats.   总被引:3,自引:3,他引:0       下载免费PDF全文
During starvation for 72 h, tumour-bearing rats showed accelerated ketonaemia and marked ketonuria. Total blood [ketone bodies] were 8.53 mM and 3.34 mM in tumour-bearing and control (non-tumour-bearing) rats respectively (P less than 0.001). The [3-hydroxybutyrate]/[acetoacetate] ratio was 1.3 in the tumour-bearing rats, compared with 3.2 in the controls at 72 h (P less than 0.001). Blood [glucose] and hepatic [glycogen] were lower at the start of starvation in tumour-bearing rats, whereas plasma [non-esterified fatty acids] were not increased above those in the control rats during starvation. After functional hepatectomy, blood [acetoacetate], but not [3-hydroxybutyrate], decreased rapidly in tumour-bearing rats, whereas both ketone bodies decreased, and at a slower rate, in the control rats. Blood [glucose] decreased more rapidly in the hepatectomized control rats. Hepatocytes prepared from 72 h-starved tumour-bearing and control rats showed similar rates of ketogenesis from palmitate, and the distribution of [1-14C] palmitate between oxidation (ketone bodies and CO2) and esterification was also unaffected by tumour-bearing, as was the rate of gluconeogenesis from lactate. The carcinoma itself showed rapid rates of glycolysis and a poor ability to metabolize ketone bodies in vitro. The results are consistent with the peripheral, normal, tissues in tumour-bearing rats having increased ketone-body and decreased glucose metabolic turnover rates.  相似文献   

11.
Excessive intake of fructose increases lipogenesis in the liver, leading to hepatic lipid accumulation and development of fatty liver disease. Metabolic alterations in the liver due to fructose intake have been reported in many studies, but the effect of fructose administration on hepatic gluconeogenesis is not fully understood. The aim of this study was to evaluate the acute effects of fructose administration on fasting-induced hepatic gluconeogenesis. C57BL/6J mice were administered fructose solution after 14 h of fasting and plasma insulin, glucose, free fatty acids, and ketone bodies were analysed. We also measured phosphorylated AKT and forkhead box O (FoxO) 1 protein levels and gene expression related to gluconeogenesis in the liver. Furthermore, we measured glucose production from pyruvate after fructose administration. Glucose-administered mice were used as controls. Fructose administration enhanced phosphorylation of AKT in the liver, without increase of blood insulin levels. Blood free fatty acids and ketone bodies concentrations were as high as those in the fasting group after fructose administration, suggesting that insulin-induced inhibition of lipolysis did not occur in mice administered with fructose. Fructose also enhanced phosphorylation of FoxO1 and suppressed gluconeogenic gene expression, glucose-6-phosphatase activity, and glucose production from pyruvate. The present study suggests that acute fructose administration suppresses fasting-induced hepatic gluconeogenesis in an insulin-independent manner.  相似文献   

12.
1. The effects of ATP, inorganic phosphate and citrate on the relationship between fructose 6-phosphate concentration and initial velocity of reaction has been investigated with a partially purified preparation of rat-heart phosphofructokinase. 2. At low concentrations of ATP (<80mum) rate curves for fructose 6-phosphate approximated to Michaelis-Menten kinetics. At higher ATP concentrations rate curves were sigmoid, the K(m) for fructose 6-phosphate increased and the reaction appeared to be first-order with respect to fructose 6-phosphate at concentrations above its K(m) and of a higher order at concentrations below its K(m). Inorganic phosphate lowered the K(m) for fructose 6-phosphate and the concentration at which the apparent kinetic order decreased. 3. At 40mum-ATP, citrate was an activator at low concentration (<100mum) and an inhibitor at higher concentrations. At 0.5mm-ATP, citrate was inhibitory at all concentrations tested. 4. A new method for phosphofructokinase assay using [U-(14)C]fructose 6-phosphate is described which allows measurements to be made of the velocity of the forward reaction at known concentrations of the products of the reaction. With this method confirmatory evidence has been obtained that concentrations of ATP, AMP, phosphate and citrate may regulate phosphofructokinase in the perfused rat heart.  相似文献   

13.
1. Citrate inhibits the activities of phosphofructokinase from muscles and nervous tissues from different animals across the Animal Kingdom except for the insects. The enzymes from the flight muscle of nine different insects and the cerebral ganglion of the locust were investigated: no inhibition by citrate was observed. Inhibition was observed with the enzymes from both aerobic (e.g. pectoral muscle of pigeon) and anaerobic (e.g. fish muscle, pectoral muscle of the game birds) muscles. It is suggested that this inhibition is of physiological importance in decreasing the rate of glucose utilization in skeletal muscle of animals during starvation and/or prolonged exercise. 2. The rates of glucose utilization by the sartorius and gastrocnemius muscles of the frog were markedly decreased by ketone bodies. The latter elevated the glucose 6-phosphate and citrate contents of the gastrocnemius muscle, indicating that citrate inhibition of phosphofructokinase could be, in part, responsible for the decreased rate of glycolysis. 3. These findings provide evidence that the concept of the glucose-fatty acid-ketone-body cycle involves both aerobic and anaerobic skeletal muscle and nervous tissue from a wide range of animals except the insects. In the latter the concept of the cycle may not be applicable.  相似文献   

14.
1. Incubation of hepatocytes from fed or starved rats with increasing glucose concentrations caused a stimulation of lactate production, which was further increased under anaerobic conditions. 2. When glycolysis was stimulated by anoxia, [fructose 2,6-bis-phosphate] was decreased, indicating that this ester could not be responsible for the onset of anaerobic glycolysis. In addition, the effect of glucose in increasing [fructose 2,6-bisphosphate] under aerobic conditions was greatly impaired in anoxic hepatocytes. [Fructose 2,6-bisphosphate] was also diminished in ischaemic liver, skeletal muscle and heart. 3. The following changes in metabolite concentration were observed in anaerobic hepatocytes: AMP, ADP, lactate and L-glycerol 3-phosphate were increased; ATP, citrate and pyruvate were decreased: phosphoenolpyruvate and hexose 6-phosphates were little affected. Concentrations of adenine nucleotides were, however, little changed by anoxia when hepatocytes from fed rats were incubated with 50 mM-glucose. 4. The activity of ATP:fructose 6-phosphate 2-phosphotransferase was not affected by anoxia but decreased by cyclic AMP. 5. The role of fructose 2,6-bisphosphate in the regulation of glycolysis is discussed.  相似文献   

15.
1. Withdrawal of food from lactating rats produced a rapid and dramatic decrease in the uptake of glucose by the mammary gland and an inhibition of the rate of fatty acid synthesis that could not be explained alone by decreased substrate supply to the tissue. 2. Within the first 6 hr starvation, fatty acid synthesis and pyruvate dehydrogenase activity were inhibited by 87 and 80%, respectively, but acetyl-CoA carboxylase activity did not change significantly. 3. Between 6 and 24 hr starvation, total and expressed activities of acetyl-CoA carboxylase decreased by 62 and 55%, respectively. 4. The ratio of fructose-6-phosphate/fructose-1,6-bisphosphate concentration in mammary tissue increased 9-fold during the first 6 hr starvation, indicating an inhibition of 6-phosphofructo-1-kinase. However, the major inhibition of this enzyme occurred between 6 and 24 hr starvation when this metabolite ratio increased a further 160-fold in parallel with increased tissue citrate concentration. 5. The increase in citrate concentration between 6 and 24 hr starvation correlated with acetyl-CoA carboxylase inactivation and ketone body accumulation in the mammary gland. 6. This study confirms the asynchronous control of three important regulatory steps in the pathway of glucose utilization and fatty acid synthesis in the lactating rat mammary gland.  相似文献   

16.
Inhibition of fatty acid oxidation with pent-4-enoate in suckling newborn rats caused a fall in blood [glucose] and blood [ketone bodies] and inhibition of gluconeogenesis from lactate. Glucose utilization was not increased in newborn rats injected with pent-4-enoate. Active fatty acid oxidation appears to be essential to support gluconeogenesis and to maintain normal blood [glucose] in suckling newborn rats.  相似文献   

17.
1. Oral administration of triacylglycerol (triolein) to starved/chow-refed lactating rats suppressed the lipogenic switch-on in the mammary gland in vivo. 2. A time-course study revealed that triolein, administered at 30 min after the onset of refeeding, had no influence on lipogenic rate in the mammary gland between 30 and 60 min, but markedly decreased it between 60 and 90 min. Glucose uptake by the mammary gland (arteriovenous difference) increased by 30 min of refeeding, as did lactate production. Between 30 and 90 min glucose uptake remained high in the control animals, but glucose uptake and net C3-unit uptake were decreased in the triolein-loaded animals by 90 min. 3. Triolein increased [glucose 6-phosphate] in the gland and simultaneously decreased [fructose 1,6-bisphosphate], indicative of a decrease in phosphofructokinase activity. This cross-over occurred at 60 min, i.e. immediately before the inhibition of lipogenesis, and by 90 min had reached 'starved' values. 4. Triolein had no effect on plasma [insulin] nor on whole-blood [glucose], [lactate] or [3-hydroxybutyrate]; a small increase in [acetoacetate] was observed. 5. Infusion of the lipoprotein lipase inhibitor, Triton WR1339, abolished the suppression of mammary-gland lipogenesis by triolein and the increase in the [glucose 6-phosphate]/[fructose 1,6-bisphosphate] ratio, suggesting a direct influence of dietary lipid on mammary-gland glucose utilization and phosphofructokinase activity.  相似文献   

18.
Oleate stimulates glucose production and concomitantly decreases lactate and pyruvate production by rat hepatocyte suspensions incubated with dihydroxyacetone as substrate. The actions of oleate could be blocked by D-(+)dodecanoylcarnitine, which inhibits transport of the fatty acid into the mitochondria and the subsequent oxidation. beta-Hydroxybutyrate, but not acetoacetate, also stimulated glucose synthesis and inhibited lactate and pyruvate production. Furthermore, both beta-hydroxybutyrate and oleate stimulated oxygen consumption to the same extent. This suggests that oleate stimulates glucose production by the provision of energy subsequent to mitochondrial beta-oxidation of the fatty acids. The content of ATP itself did not appear to be responsible for the effects of oleate. Crossover analysis of the gluconeogenic intermediates implicated a site of oleate action between fructose 1,6-bisphosphate and fructose 6-phosphate, suggesting phosphofructokinase and/or fructose-bisphosphatase as possible regulatory sites. Coupled with the finding that intracellular citrate accumulates upon addition of oleate or beta-hydroxybutyrate, but not acetoacetate, the results suggest that citrate inhibition of phosphofructokinase accounts for the redirection of carbon flow from lactate and pyruvate formation and towards that of glucose.  相似文献   

19.
To clarify the physiological role of fructose 2,6-bisphosphate in the perinatal switching of myocardial fuels from carbohydrate to fatty acids, the kinetic effects of fructose 2,6-bisphosphate on phosphofructokinase purified from fetal and adult rat hearts were compared. For both enzymes at physiological pH and ATP concentrations, 1 microM fructose 2,6-bisphosphate induced a greater than 10-fold reduction in S0.5 for fructose 6-phosphate and it completely eliminated subunit cooperativity. Fructose 2,6-bisphosphate may thereby reduce the influence of changes in fructose 6-phosphate concentration on phosphofructokinase activity. Based on double-reciprocal plots and ATP inhibition studies, adult heart phosphofructokinase activity is more sensitive to physiological changes in ATP and citrate concentrations than to changes in fructose 2,6-bisphosphate concentrations. Fetal heart phosphofructokinase is less sensitive to ATP concentration above 5 mM and equally sensitive to citrate inhibition. The fetal enzyme has up to a 15-fold lower affinity for fructose 2,6-bisphosphate, rendering it more sensitive to changes in fructose 2,6-bisphosphate concentration than adult heart phosphofructokinase. Together, these factors allow greater phosphofructokinase activity in fetal heart while retaining sensitive metabolic control. In both fetal and adult heart, fructose 2,6-bisphosphate is primarily permissive: it abolishes subunit cooperativity and in its presence phosphofructokinase activity is extraordinarily sensitive to both the energy balance of the cell as reflected in ATP concentration and the availability of other fuels as reflected in cytosolic citrate concentration.  相似文献   

20.
The effects of the glucocorticoid dexamethasone on fatty acid and pyruvate metabolism were studied in rat hepatocyte cultures. Parenchymal hepatocytes were cultured for 24 h with nanomolar concentrations of dexamethasone in either the absence or the presence of insulin (10 nM) or dibutyryl cyclic AMP (1 microM BcAMP). Dexamethasone (1-100 nM) increased the rate of formation of ketone bodies from 0.5 mM-palmitate in both the absence and the presence of BcAMP, but inhibited ketogenesis in the presence of insulin. Dexamethasone increased the proportion of the palmitate metabolized that was partitioned towards oxidation to ketone bodies, and decreased the cellular [glycerol 3-phosphate]. The latter suggests that the increased partitioning of palmitate to ketone bodies may be associated with decreased esterification to glycerolipid. The Vmax. of carnitine palmitoyltransferase (CPT) and the affinity of CPT for palmitoyl-CoA were not affected by dexamethasone, indicating that the increased ketogenesis was not due to an increase in enzymic capacity for long-chain acylcarnitine formation. Dexamethasone and BcAMP, separately and in combination, increased gluconeogenesis. In the presence of insulin, however, dexamethasone inhibited gluconeogenesis. Changes in gluconeogenesis thus paralleled changes in ketogenesis. Dexamethasone decreased the [3-hydroxybutyrate]/[acetoacetate] ratio, despite increasing the rate of ketogenesis and presumably the mitochondrial production of reducing equivalents. The more oxidized mitochondrial NADH/NAD+ redox couple with dexamethasone is probably due either to an increased rate of electron transport or to increased transfer of mitochondrial reducing equivalents to the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号