首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We studied summer activity patterns and thermoregulation in the Mediterranean lizard Psammodromus algirus in a holm oak wood in Central Spain. The circadian rhythm curve was bimodal, with a pronounced peak after sunrise, a minimum at noon and a second lower peak in the afternoon. Increased activity in the morning could be explained by insolation levels, whereas the midday low was caused by the rise in temperature.
There was a strong positive correlation between body temperature and both air and ground temperatures. Nevertheless, there was no significant correlation between body and air temperatures when the effect of radiation was removed, which was done by considering only individuals in the shade at high temperatures.
Activity showed a bell-shaped relationship with body and air temperatures, with maximum activity at 24.5°C (air temperature) and 31.4°C (body temperature). The spatial distribution pattern of P. algirus (selection of sunny areas and distance to the vegetation edge) reflects the environmental temperatures that are optimal for activity; the lizards show a strong preference for sunny patches when air temperature is lower than the optimum. We conclude that heliothermy is the only viable thermoregulation pattern in Mediterranean forest environments, with heat conduction playing a negligible rote.  相似文献   

3.
The medial cortex of Psammodromus presents a three-layer organization. Most of the cell bodies are localized in a compact lamina, the cellular layer. Two plexiform layers, superficial and deep, enclose the cellular layer. The most external portion of the superficial plexiform layer is formed by a limiting glial sheet consisting of tanycytic processes that reach the surface of the cortex. Astrocytes are localized close to the glial sheet. There are two types of axon terminals within the superficial plexiform layer: type S with spheric vesicles and type F with pleomorphic vesicles. Large solitary neurons are present at middle levels of the layer. In the cellular layer there are three neuronal types: large neurons with dispersed chromatin, neurons of medium size with chromatin clumps, and electron-dense neurons. Protoplasmic astrocytes are found superficially in this layer. In the deep plexiform layer numerous neuronal cell bodies are visible, and three types can be distinguished: horizontal fusiform cells, globous neurons with indented nuclei, and electron-dense neurons. Protoplasmic astrocytes are present throughout this layer. Oligodendrocytes are more frequent in the inner third of the layer, often related to fibers of a thick fascicle running in contact with the ependyma, the alveus. The ependyma is formed by a single row of prismatic cells bordering the lateral ventricle.  相似文献   

4.
Eight microsatellite loci are described for the lizard Psammodromus algirus, a species widely used as a model in behavioural and ecological studies. All loci were highly polymorphic (six alleles or more per locus) in a sample of 24 individuals from a single site near Navacerrada (central Spain). Observed heterozygosity ranged from 0.29 to 0.96. These markers will be used to study mating strategies and determinants of reproductive success in this species.  相似文献   

5.
Maximizing the average rate of energy intake (profitability) may not always be the optimal foraging strategy for ectotherms with relatively low energy requirements. To test this hypothesis, we studied the feeding behaviour of captive insectivorous lizards Psammodromus algirus, and we obtained experimental estimates of prey mass, handling time, profitability, and attack distance for several types of prey. Handling time increased linearly with prey mass and differed significantly among prey types when prey size differences were controlled for, and mean profitabilities differed among prey taxa, but profitability was independent of prey size. The attack distance increased with prey length and with the mobility of prey, but it was unrelated to profitability. Thus, lizards did not seem to take account of the rate of energy intake per second as a proximate cue eliciting predatory behavior. This information was combined with pitfall-trap censuses of prey (in late April, mid-June and late July) that allowed us to compare the mass of the prey captured in the environment with that of the arthropods found in the stomachs of sacrificed free-living lizards. In April, when food abundance was low and lizards were reproducing, profitability had a pronounced effect on size selection and lizards selected prey larger than average from all taxa except the least profitable ones. As the active season progressed, and with a higher availability of food, the number of prey per stomach decreased and their mean ize increased. The effect of profitability on size selection decreased (June) and eventually vanished (July–August). This variation is probably related to seasonal changes in the ecology of lizards, e.g. time minimization in the breeding season as a means of saving time for nonforaging activities versus movement minimization by selecting fewer (but larger) prey in the postbreeding season. Thus, the hypothesis that maximizing profitability could be just an optional strategy for a terrestrial ectothermic vertebrate was supported by our data.  相似文献   

6.
The telencephalic medial wall of the lizard Psammodromus algirus was studied using Golgi and conventional light microscopic techniques. The area is formed by two different cytological fields—medial cortex and dorsomedial cortex. These two cortices possess three layers dorsoventrally: a superficial plexiform layer, a cellular layer, and a deep plexiform layer. The alveus, a deep fiber system, runs adjacent to the ependyma. Four classes of neurons are found in the cellular layer of the medial cortex on the basis of soma shape, dendritic pattern, and position in the layer: horizontal, double pyramidal, and candelabra cells. Solitary cells are present in the superficial and deep plexiform layers of the medial cortex. Those of the superficial plexiform layer are stellate cells. Horizontal and vertical cells are found in the deep plexiform layer. Double pyramidal cells are the most frequently impregnated in the cellular layer of the dorsomedial cortex. In addition, candelabra cells are present at the lateral end of the layer. Two cell types are found in the deep plexiform layer of the dorsomedial cortex: solitary pyramidal cells and, among the fibers of the alveus, horizontal cells. Ependymal tanycytes line the ventricular surface, and protoplasmic astrocytes are found in the plexiform layers of both medial and dorsomedial cortices.  相似文献   

7.
Numerous lizard species use caudal autotomy as an antipredatordevice even though there must be significant costs during theperiod of tail regeneration. Strategies used by tailless individualsto enhance survival in natural populations are still poorlyunderstood. We experimentally examine tail loss in large, dominantmales of Psammodromus algirus in the middle of the breedingseason in the field. We report data showing home range reductionof large dominant males after autotomy, reduction in the numberof females in the home ranges of manipulated males, and a potentialincrease in mating opportunities of small subordinate maleswith complete tails. We conclude that changes in home rangeuse because of desertion of areas with less cover can resultin decreased predation risk at the cost of decreased accessto females.  相似文献   

8.
9.
Most animals rely on their escape speed to flee from predators. Here, we test several hypotheses on the evolution of escape speed in the lizard Psammodromus algirus. We test that: (1) Longer limbs should improve speed sprint. (2) Heavier lizards should be impaired regarding their sprint speed ability, suggesting a trade-off between fat storage and escape capability. (3) Males should achieve faster speeds due to their higher exposure to predators. (4) Gravid females, with increased body mass, should perform lower speed than non-gravid females. And (5) there are inter-population differences in sprint speed across an elevational gradient. We measured lizards sprint speed in a lineal raceway in the laboratory, filming races in standardized conditions and then calculating their maximal speed. We found that hind limb length greatly determined maximal sprint speed, lizards with longer limbs being faster. In parallel, higher body masses reduced maximal speed, which points to a trade-off between fat storage and escaping capability. Sexual differences also arose, as males were faster than females, as a consequence of males having longer limbs. Regarding females, gravidity did not impair maximal sprint speed, suggesting adaptations which compensate for the increased body mass. Finally, we found no elevational trend in both limbs length and sprint speed. In any case, this study suggests that selection on escape capacity may cast morphological evolution, and affect other life-history traits, such as fat storage and reproduction.  相似文献   

10.
Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator-prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10-30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator-prey interactions can be a mechanism by which global warming affects ecological communities.  相似文献   

11.
断尾对胎生蜥蜴运动能力和选择体温的影响   总被引:1,自引:0,他引:1  
尾自切是蜥蜴为了降低被捕食危险而采取的一种反捕食适应策略,但断尾可导致体重减轻、热量收支平衡改变,并影响蜥蜴的运动能力和体温调节.为检验断尾对蜥蜴运动能力和选择体温的影响,于2006年5月选取黑龙江省小兴安岭地区的一个胎生蜥蜴种群进行实验.结果表明:在30 ℃和24℃两个实验温度下,断尾后胎生蜥蜴的运动能力均明显下降,表现在停顿次数增多、最大可持续距离和最大疾跑速度减少等方面;断尾、温度和性别对胎生蜥蝎运动能力的影响在一定程度上是相互独立的,断尾是影响胎生蜥蜴运动能力的主要因素;断尾对胎生蜥蝎的选择体温没有显著影响.  相似文献   

12.
13.
Salamander tail autotomy improves survival, but loss of the tail can subsequently be costly. For example, burst swimming speed is significantly slower after autotomy in desmognathan salamanders, which may increase predation risk in aquatic habitats. However, any long-term cost of tail loss is contingent on the rate of tail regeneration. To examine variation among seasons and environments in the cost of tail autotomy, we tested the effect of temperature, photoperiod, and feeding on tail-length re-growth in the semiaquatic plethodontid salamander Desmognathus conanti. Eight experimental groups (n=15 each, equivalent in body size) were tested. After acclimation for four weeks at one of two temperatures (either 10 °C or 20 °C) and one of two photoperiods (either L:D 9.5:14.5 h or 14.5:9.5 h), 60% of the tail length was autotomized for each individual. After autotomy, each experimental group was maintained under unique conditions of temperature (either 10 °C or 20 °C), photoperiod (either L:D 9.5:14.5 h or 14.5:9.5 h), and feeding (either fasting or weekly feeding). The length of the regenerated tail portion for each individual was measured each week until the group with the fastest re-growth had regenerated 50% of the lost tail length. Low temperature had a large, negative effect, fasting had a small, negative effect, but photoperiod had no significant effect on tail re-growth. The large thermal effect resulted from a combination of delayed initiation of tail-length re-growth and reduced regeneration rate thereafter at low temperature. We conclude that the cost of salamander tail autotomy differs among seasons and environments based on variation in temperature and food availability.  相似文献   

14.
15.
S. F. Fox  J. K. McCoy 《Oecologia》2000,122(3):327-334
Tail autotomy is a defense against predators used by many lizard species but is associated with various costs, most of which have been measured only in the laboratory. We conducted a field experiment in which we induced tail autotomy to approximately half (58%) of a marked sample (n=326) of Uta stansburiana from western Texas in the fall, and left the other half with intact tails. The following spring we determined survival, measured growth, and brought females to the laboratory to allow them to oviposit their eggs, which we incubated until hatching. Based on past studies, we anticipated inferior survival, growth, and reproduction following tail autotomy. We also predicted that females with tail loss would be energetically compromised and would alter the sex ratio of their offspring toward more daughters (as predicted by the Trivers-Willard hypothesis). Tailless lizards experienced significantly reduced survivorship, but those that survived grew the same as their tailed counterparts. Tailed and tailless females produced clutches equivalent in number of eggs and total mass. Whereas tailed females showed a significant positive relationship between average egg mass and snout-vent length, tailless females did not. Contrary to our expectations, tailless females produced heavier hatchlings than tailed ones, and sex ratios of hatchlings were equivalent for tailed and tailless females. In this population, tail loss in subadults leads to an increased risk of death, but apparently does not impose an energetic handicap such that later growth and reproduction suffer. We suggest that because tailless females are faced with decreased reproductive value, they respond by growing as much and laying as many eggs of the same mass as tailed females, despite the fact that they are also regenerating the tail. In addition, they somehow produce larger hatchlings than tailed females. Nevertheless, tailless females probably end up with lower overall lifetime fitness than tailed females, and tail loss thus induces the conditional reproductive strategy ”make the best of a bad situation”. Because tailless females produce larger, not smaller, hatchlings, they do not produce more daughters as predicted; i.e., we found no evidence for the Trivers-Willard effect following tail autotomy. Received: 29 November 1998 / Accepted: 17 September 1999  相似文献   

16.
A histological evaluation of the effects of hypophysectomy and throxine therapy in young tail regenerates was carried out in the small iguanid lizard, Anolis c. carolinensis. Hypophysectomy caused a delay but did not inhibit blastema formation. The growth of the ependyma into the wound region was delayed in hypophysioprivic regenerates by about a week. Growth and differentiation of hypophysioprivic regenerates after blastema formation was variable, ranging from virtually no growth to the formation of a differentiated but very small protuberance. However, actual tail elongation was inhibited by hypophysectomy. In those hypophysioprivic regenerates that did show signs of differentiation, muscle groups were poorly defined, scanty in appearance and not as well differentiated as the cartilage tube. Thyroxine treatment in the young hypophysioprivic regenerates stimulated normal growth and normal appearance and differentiation of promuscle and procartilage aggregates as well as the growth of the ependymal tube into the blastema.  相似文献   

17.
Using video cameras and motion detection software, we examined sequential positions of the lizard Podarcis carbonelli in a temperature gradient to look for patterns in spatial and temporal thermoregulatory movements. As lizards shuttled between warm and cool areas, their movements were typically slow; punctuated by bursts of speed. The animals were relatively inactive when heating, moved almost continually when cooling, and spent less time heating than cooling. Traditional modeling techniques proved unsuccessful, so we assessed the movement patterns with nonlinear dynamical techniques. The shuttling frequency, and the pattern of velocity changes, both met the qualitative attributes (self similarity, strange attractors, and noisy power spectra) and the quantitative criteria (positive Lyapunov exponent and capacity and/or correlation dimensions less than 5) that suggest deterministic chaos. These movement patterns appear regular, but at unpredictable times the patterns become disturbed before returning to regulation. There are both behavioral and physiological advantages to movements that follow a model of deterministic chaos control.  相似文献   

18.
Developing animals are particularly vulnerable to predation. Hence, precocial young of many taxa develop predator escape performance that rivals that of adults. Ontogenetically unique among vertebrates, birds transition from hind limb to forelimb dependence for escape behaviours, so developmental investment for immediate gains in running performance may impair flight performance later. Here, in a three-dimensional kinematic study of developing birds performing pre-flight flapping locomotor behaviours, wing-assisted incline running (WAIR) and a newly described behaviour, controlled flapping descent (CFD), we define three stages of locomotor ontogeny in a model gallinaceous bird (Alectoris chukar). In stage I (1–7 days post-hatching (dph)) birds crawl quadrupedally during ascents, and their flapping fails to reduce their acceleration during aerial descents. Stage II (8–19 dph) birds use symmetric wing beats during WAIR, and in CFD significantly reduce acceleration while controlling body pitch to land on their feet. In stage III (20 dph to adults), birds are capable of vertical WAIR and level-powered flight. In contrast to altricial species, which first fly when nearly at adult mass, we show that in a precocial bird the major requirements for flight (i.e. high power output, wing control and wing size) convene by around 8 dph (at ca 5% of adult mass) and yield significant gains in escape performance: immature chukars can fly by 20 dph, at only about 12 per cent of adult mass.  相似文献   

19.
The uninjured caudal skeletal muscle of two lizards, Lygosoma and Anolis, contains satellite cells. The satellite cell nuclei constitute 7.5% and 4.8% of the combined satellite and muscle nuclei, in Lygosoma and Anolis, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号