首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Jard 《Journal de physiologie》1981,77(4-5):621-628
Two type of vasopressin receptors can be distinguished on the basis of their relation to adenylate cyclase. V1 renal receptors are coupled to adenylate cyclase; V2 receptors, present, for example, in liver and blood vessels, are not coupled to adenylate cyclase. V1 and V2 receptors also differ with respect to their abilities to discriminate between several structural analogues of vasopressin. V1 and V2 receptors, present in several cellular and homologous acellular preparations (isolated hepatocytes and live membranes, renal cells in culture and renal membranes), have been characterized using tritiated vasopressin. Dissociation constants for vasopressin binding to intact cells are comparable to dissociation constants for binding to acellular preparations. In all systems studied, a marked amplification of the hormonal signal can be demonstrated.  相似文献   

2.
Vasopressin agonists and antagonists   总被引:2,自引:0,他引:2  
M Thibonnier 《Hormone research》1990,34(3-4):124-128
In this article, the discrete modifications of the structure of the vasopressin molecule which led to the development of specific V1 vascular, V2 renal, and mixed V1/V2 analogs are reviewed. Particularly, the third generation of vasopressin antagonists produced by deletions and substitutions of the carboxy terminal, and the fourth generation of vasopressin antagonists obtained by deletions, substitutions, and the linearization of the molecule are presented. The potential advantages of these different compounds are illustrated by our work on V1 vascular vasopressin receptors of human platelets.  相似文献   

3.
We predict some essential interactions between the V2 vasopressin renal receptor (V2R) and its agonists [Arg8]vasopressin (AVP) and [D-Arg8]vasopressin (DAVP), and the non-peptide antagonist OPC-31260. V2R controls antidiuresis and belongs to the superfamily of heptahelical transmembrane (7TM) G-protein-coupled receptors (GPCRs). The receptor was built, the ligands were docked and the structures relaxed using advanced molecular modeling techniques. Docked agonists and antagonists appear to prefer similar V2R compartments. A number of receptor amino acid residues are indicated, mainly in the TM3–TM7 helices, as potentially important in ligand binding. Many of these residues are invariant for either the GPCR superfamily or the subfamily of related (vasopressin V2R, V1aR and V1bR and oxytocin OR) receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for ligand affinity [Mouillac et al., J. Biol. Chem., 270 (1995) 25771].  相似文献   

4.
Summary We predict some essential interactions between the V2 vasopressin renal receptor (V2R) and its agonists [Arg8]vasopressin (AVP) and [D-Arg8]vasopressin (DAVP), and the non-peptide antagonist OPC-31260. V2R controls antidiuresis and belongs to the superfamily of heptahelical transmembrane (7TM) G-protein-coupled receptors (GPCRs). The receptor was built, the ligands were docked and the structures relaxed using advanced molecular modeling techniques. Docked agonists and antagonists appear to prefer similar V2R compartments. A number of receptor amino acid residues are indicated, mainly in the TM3-TM7 helices, as potentially important in ligand binding. Many of these residues are invariant for either the GPCR superfamily or the subfamily of related (vasopressin V2R, V1aR and V1bR and oxytocin OR) receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for ligand affinity [Mouillac et al., J. Biol. Chem., 270 (1995) 25771].  相似文献   

5.
Vasopressin receptor subtypes in dorsal hindbrain and renal medulla   总被引:2,自引:0,他引:2  
We have investigated the ability of a series of synthetic vasopressin analogues and related peptides to compete with (3H)-arginine8 vasopressin for binding sites in rat renal medulla and dorsal hindbrain. In renal medulla, arginine8 vasopressin and deamino arginine8 vasopressin, a selective antidiuretic, were equipotent while two antagonists of the pressor action of arginine vasopressin were less potent. In the dorsal hindbrain, arginine8 vasopressin and the pressor antagonists were more potent than the synthetic antidiuretic. Potency profiles of these and other analogues suggest that the renal medulla and dorsal hindbrain vasopressin receptors represent different subtypes.  相似文献   

6.
To test the hypothesis that the vasopressin receptors found in seminal vesicles are similar to those present in the renal tubules competition experiments were performed with vasopressin and several analogues with different specificities for the V1 and V2 subtypes of vasopressin receptor. Autoradiographic studies were carried out on sections from seminal vesicles and kidney to identify the cellular target of vasopressin. Vasopressin receptors in renal medulla and seminal vesicles of pigs shared the same rank order of potency for vasopressin and its analogues and were localized in the epithelium of the seminal vesicles and in collecting tubules of renal medulla. These results strongly suggest that the vasopressin receptors present in kidney and seminal vesicles belong to the same subtype, V2, of vasopressin receptor.  相似文献   

7.
It has been suggested there is a decreased renal responsiveness to vasopressin following spaceflight and that this may be the mechanism for the increased urine flow that is observed following return to normal gravity. In the present study, we have therefore measured vasopressin receptor expression and activity in kidneys taken from rats 1 and 14 days following spaceflight of 15 days duration. Measurements of renal vasopressin V(2) and V(1a) receptor mRNA expression by quantitative RT-PCR demonstrated little difference at either 1 day or at 14 days following return from space. Evaluation of (3)H-labeled arginine vasopressin binding to membranes prepared from kidneys indicated that the majority of the vasopressin receptors were V(2) receptors. Furthermore, the data suggested that binding to vasopressin V(2) or V(1a) receptors was unaltered at 1 day and 14 days following spaceflight. Similarly, the ability of vasopressin to stimulate adenylate cyclase suggested no change in vasopressin V(2) receptor activity in these animals. These data suggest that, whatever changes in fluid and electrolyte metabolism are observed following spaceflight, they are not mediated by changes in vasopressin receptor number or vasopressin-induced stimulation of adenylate cyclase.  相似文献   

8.
A series of substituted spirobenzazepines was prepared and evaluated as V(1a) and V(2) dual vasopressin receptor antagonists. Compounds 7p and 7q have been shown to be not only potent inhibitors of vasopressin receptors, but also have exhibited an excellent overall pharmaceutical suitability profile.  相似文献   

9.
To identify and characterize V1 vasopressin receptors, photoreactive antagonists of the glycogenolytic and vasoconstrictor activity of vasopressin have been synthesized. The following analogues with 3-mercapto-3,3-cyclopentamethylene-propionic acid (Mca) and N-methylalanine (MeAla) in position 1 and 7 of vasopressin (VP) were effective V1 antagonists: [Mca1, D-Tyr2, MeAla7, Lys8]VP (1), [Mca1, MeAla7, Arg8, Lys9]VP (2), [Mca1, MeAla7, Arg8, D-Lys9]VP (3). Introduction of the photoreactive 4-azidophenylamidino group into the side-chain of Lys8 in analogue 1 or into Lys9 in analogues 2 and 3 increased the potency (for analogue 1 a tenfold increase in the antiglycogenolytic effect and a fivefold increase in the antivasopressor effect) and binding affinity for the rat hepatic V1 receptor. Mono-iodination at Tyr2 with 125I resulted in photoreactive antagonists of high specific radioactivity, which had roughly the same binding affinity as vasopressin for the rat hepatic V1 receptor (Kd = 0.9-1.8 nM). In photoaffinity labelling experiments with purified rat liver membranes, containing 2--3 pmol V1 receptor/mg protein, the analogues labelled specifically two proteins with the relative molecular masses (Mr) of 30,000 and 38,000. These results and the results of a recent study using 3H-labelled photoreactive vasopressin agonists [Boer, R. and Fahrenholz, F. (1985) J. Biol. Chem. 260, 15051-15054] provide evidence that both vasopressin agonists and antagonists can interact with the same two subunits of the heterodimeric hepatic V1 receptor. Furthermore the radioiodinated photoreactive V1 antagonists should be helpful to identify V1 receptor proteins in membranes of other cell types.  相似文献   

10.
The effects of propylthiouracil (PTU) treatment on the plasma vasopressin level, on the number of hepatic (V1) or renal (V2) vasopressin receptors and on the hormone-sensitive adenylate cyclase activity in the kidney of developing rats were studied in parallel. In addition, we investigated the corrective effects of thyroxine therapy on the plasma vasopressin level and parameters related to the liver, and the effects of vasopressin therapy on the parameters related to the kidney. As already reported in the case of the number of V2 receptors and adenylate cyclase activity in the kidney, the deficient plasma vasopressin level in hypothyroid rats was completely corrected by two daily physiological doses of thyroxine given from birth to the age of sacrifice (1 month). Unlike the V1 receptors, the V2 receptors are known to be highly dependent on their specific circulating ligand. Since, first of all, the deficit was similar in the numbers of V1 and V2 receptors in hypothyroid rats, and, secondly, the treatment of hypothyroid rats by two daily physiological doses of long lasting vasopressin was found ineffective to recover the deficit in the number of V2 receptors, it can be concluded that thyroid deficiency directly alters vasopressin receptor biosynthesis in both liver and kidney, instead of acting via the depressed plasma vasopressin level.  相似文献   

11.
Vasopressin receptor antagonists can elicit ion-sparing diuretic effects (i.e., aquaresis) in vivo by blunting the action of the circulating hypophyseal hormone arginine vasopressin. We have identified two new series of basic tricyclic benzodiazepines, represented by general structure 1, which contain compounds that bind with high affinity to human V2 receptors. For example, (S)-(+)-8 and 5 are potent and selective V2 receptor antagonists with pronounced aquaretic activity in rats on oral administration.  相似文献   

12.
Defining how the agonist-receptor interaction differs from that of the antagonist-receptor and understanding the mechanisms of receptor activation are fundamental issues in cell signalling. The V1a vasopressin receptor (V1aR) is a member of a family of related G-protein coupled receptors that are activated by neurohypophysial peptide hormones, including vasopressin (AVP). It has recently been reported that an arginyl in the distal N-terminus of the V1aR is critical for binding agonists but not antagonists. To determine specific features required at this locus to support high affinity agonist binding and second messenger generation, Arg46 was substituted by all other 19 encoded amino acids. Our data establish that there is an absolute requirement for arginyl, as none of the [R46X]V1aR mutant constructs supported high affinity agonist binding and all 19 had defective signalling. In contrast, all of the mutant receptors possessed wildtype binding for both peptide and nonpeptide antagonists. The ratio of Ki to EC50, an indicator of efficacy, was increased for all substitutions. Consequently, although [R46X]V1aR constructs have a lower affinity for agonist, once AVP has bound all 19 are more likely than the wildtype V1aR to become activated. Therefore, in the wildtype V1aR, Arg46 constrains the inactive conformation of the receptor. On binding AVP this constraint is alleviated, promoting the transition to active V1aR. Our findings explain why arginyl is conserved at this locus throughout the evolutionary lineage of the neurohypophysial peptide hormone receptor family of G-protein coupled receptors.  相似文献   

13.
Novel tricyclic benzazepine derivatives were synthesized as arginine vasopressin (AVP) antagonists. Several tricyclic compounds showed potent antagonistic activity in rat AVP receptors V(1a) and V(2). Derivatives containing pyrrolo-tricyclic amines, 13i-k, 30, and 31 also showed selectivity for the V(2) receptor.  相似文献   

14.
Activation of adenosine A2a receptors in the nucleus of the solitary tract (NTS) decreases mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas increases in preganglionic adrenal sympathetic nerve activity (pre-ASNA) occur, a pattern similar to that observed during hypotensive hemorrhage. Central vasopressin V1 receptors may contribute to posthemorrhagic hypotension and bradycardia. Both V1 and A2a receptors are densely expressed in the NTS, and both of these receptors are involved in cardiovascular control; thus they may interact. The responses elicited by NTS A2a receptors are mediated mostly via nonglutamatergic mechanisms, possibly via release of vasopressin. Therefore, we investigated whether blockade of NTS V1 receptors alters the autonomic response patterns evoked by stimulation of NTS A2a receptors (CGS-21680, 20 pmol/50 nl) in alpha-chloralose-urethane anesthetized male Sprague-Dawley rats. In addition, we compared the regional sympathetic responses to microinjections of vasopressin (0.1-100 ng/50 nl) into the NTS. Blockade of V1 receptors reversed the normal decreases in MAP into increases (-95.6 +/- 28.3 vs. 51.4 +/- 15.7 integralDelta%), virtually abolished the decreases in HR (-258.3 +/- 54.0 vs. 18.9 +/- 57.8 integralDeltabeats/min) and RSNA (-239.3 +/- 47.4 vs. 15.9 +/- 36.1 integralDelta%), and did not affect the increases in pre-ASNA (279.7 +/- 48.3 vs. 233.1 +/- 54.1 integralDelta%) evoked by A2a receptor stimulation. The responses partially returned toward normal values approximately 90 min after the blockade. Microinjections of vasopressin into the NTS evoked dose-dependent decreases in HR and RSNA and variable MAP and pre-ASNA responses with a tendency toward increases. We conclude that the decreases in MAP, HR, and RSNA in response to NTS A2a receptor stimulation may be mediated via release of vasopressin from neural terminals in the NTS. The differential effects of NTS V1 and A2a receptors on RSNA versus pre-ASNA support the hypothesis that these receptor subtypes are differentially located/expressed on NTS neurons/neural terminals controlling different sympathetic outputs.  相似文献   

15.
Inactivating mutations of the V2 vasopressin receptor (V2R) cause cross-linked congenital nephrogenic diabetes insipidus (NDI), resulting in renal resistance to the antidiuretic hormone AVP. In two families showing partial NDI, characterized by an apparently normal response to diagnostic tests and an increase in the basal ADH levels suggesting AVP resistance, we have identified two V2R mutations, Ser-333del and Y128S. Both mutant V2Rs, when expressed in COS-7 cells, show partial defects in vasopressin-stimulated cAMP accumulation and intracellular localization. The inhibition of internalization does not rescue their localization. In contrast, the non-peptide V2R antagonists OPC41061 and OPC31260 partially rescue the membrane localization and basal function of these V2R mutants, whereas they inhibit the basal activity of the wild-type V2R. These results indicate that a partial loss of function of Ser-333del and Y128S mutant V2Rs results from defective membrane trafficking. These findings further indicate that V2R antagonists can act as protean agonists, serving as pharmacological chaperones for inactivating V2R mutants and also as inverse agonists of wild-type receptors. We speculate that this protean agonism could underlie the possible dual beneficial effects of the V2R antagonist: improvement of hyponatremia with heart failure or polycystic kidney disease and potential rescue of NDI.  相似文献   

16.
The vasopressin V2 receptor (V2R) belongs to the Class A G protein-coupled receptors (GPCRs). V2R is expressed in the renal collecting duct (CD), where it mediates the antidiuretic action of the neurohypophyseal hormone arginine vasopressin (CYFQNCPRG-NH2, AVP). Desmopressin ([1-deamino, 8-D]AVP, dDAVP) is strong selective V2R agonist with negligible pressor and uterotonic activity. In this paper, the interactions responsible for binding of dDAVP to vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors has been examined. Three-dimensional activated models of the receptors were constructed using the multiple sequence alignment and the complex of activated rhodopsin with Gt(alpha) C-terminal peptide of transducin MII-Gt(alpha) (338-350) prototype (Slusarz, R.; Ciarkowski, J. Acta Biochim Pol 2004 51, 129-136) as a template. The 1-ns unconstrained molecular dynamics (MD) of receptor-dDAVP complexes immersed in the fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) membrane model was conducted in an Amber 7.0 force field. Highly conserved transmembrane residues have been proposed as being responsible for V2R activation and G protein coupling. Molecular mechanism of the dDAVP binding has been suggested. The internal water molecules involved in an intricate network of the hydrogen bonds inside the receptor cavity have been identified and their role in the stabilization of the agonist-bound state proposed.  相似文献   

17.
To produce anti-idiotypic antibodies against receptors for the neurohypophyseal hormone vasopressin, an anti-vasopressin monoclonal antibody with a ligand specificity similar to that of vasopressin receptors was employed for immunization. Three anti-idiotypic monoclonal antibodies were obtained which induced, like vasopressin, plasminogen activator production in the renal epithelial cell line LLC-PK1 (expressing V2-receptors). Induction of plasminogen activator synthesis by the anti-idiotypic antibodies could be inhibited by coincubation with a vasopressin antagonist. In a fashion similar to that of vasopressin itself, the anti-idiotypic antibodies induced receptor down-regulation. The anti-idiotypic antibodies were employed to visualize vasopressin receptors on LLC-PK1 and A7r5 (V1-receptor-expressing) smooth muscle cells by immunofluorescence. Antibody-mediated fluorescence was not observed in receptor-deficient mutant cell lines or vasopressin-receptor-down-regulated cells. Furthermore, these antibodies were used for immunohistochemical localization of vasopressin receptors in rat and bovine kidney preparations. In accordance with earlier physiological and biochemical observations, vasopressin receptors were detected predominantly in collecting ducts in cortex and medulla. On the cellular level, a differential staining pattern was observed.  相似文献   

18.
Solid preclinical evidence links vasopressin to social behavior in animals, so, extensive work has been initiated to find new vasopressin V1a receptor antagonists which can improve deteriorated social behavior in humans and can treat the core symptoms of autistic behavior, as well. Our aim was to identify new chemical entities with antagonizing effects on vasopressin V1a receptors. Starting from a moderately potent HTS hit (7), we identified a molecule (49) having nanomolar binding strength and functional activity, which is in the same range as the potency of clinically tested V1a antagonists.  相似文献   

19.
Antagonists of the alpha(1)-adrenergic receptors (alpha(1)-ARs) are useful for the treatment of benign prostatic hyperplasia. A series of potent and subtype-selective alpha(1a)-AR antagonists has been synthesized, displaying in vitro binding affinity in the low the nanomolar range.  相似文献   

20.
Vasopressin, a hypothalamic hormone, acts on its target tissues via three different G protein coupled receptors. The vasopressin V1a and V1b receptors, associated to Gq protein and phospholipase C, are responsible for vasoconstriction and regulation of the corticotroph axis respectively. The V2 vasopressin receptor is coupled to Gs protein and adenylyl cyclase and is responsible for water reabsorption in the renal collecting duct. Mutations of the V2 receptor are involved in diabetes insipidus and most of these mutations result in an endoplasmic reticulum (ER) retention of the mutated receptor. With the V1b receptor model, we have identified a proximal sequence of the C-terminal segment, which is crucial for ER export. Mutations in this short domain result in ER accumulation and degradation of the receptor. SSR 149415, a nonpeptide antagonist of V1bR, which is permeable to cell membrane, is able to rescue the mutant phenotype and acts as a pharmacological chaperone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号