首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
The predicted worldwide increase in arid areas and water stress episodes will strongly affect crop production. Plants have developed a wide diversity of physiological mechanisms for drought tolerance. A decline in photosynthesis and thus yield production is a common response to drought, as are increases in the water use efficiency of photosynthesis (WUEph) and productivity (WUEp). The aim of our study was to determine the physiological effects (especially WUEph and WUEp) of progressive drought and subsequent recovery in three cultivars adapted to a Mediterranean climate [Tafilalet (TA), Tierra de Campos (TC), and Moapa (MO)], and another representative from an oceanic climate (Europe (EU)). The accuracy of the relationships between WUEph or WUEp and carbon isotope discrimination (Δ 13C) in shoots was also investigated as a function of water stress intensity. Mild drought (7 days of water withholding) decreased the net CO2 exchange (A), leaf conductance to water (g) and transpiration in EU leading to an increased WUEph. Δ 13C was correlated with WUEp but not with WUEph, probably due to a late decrease in g. After moderate drought (14 days), A and g decreased in all cultivars, increasing WUEph. In this period WUEp also increased. Both WUE parameters were correlated with Δ 13C, which may indicate that the g value at the end of moderate water stress was representative of the growing period. After 21 days, TA was the most productive cultivar but under severe drought conditions there was no difference in DM accumulation among cultivars. After the recovery period, leaf area was increased but not total DM, showing that leaves were the most responsive organs to rewatering. Severe water stress did not decrease WUEph or WUEp, and Δ 13C did not increase after recovery. This absence of a response to severe drought may indicate significant effects on the photosynthetic apparatus after 21 days of withholding water. As for mild drought, WUEp but not WUEph was correlated with Δ 13C, supporting the view that WUEp is a more integrative parameter than WUEph.  相似文献   

2.
Large spatial and temporal gradients in rainfall and temperature occur across Australia. This heterogeneity drives ecological differentiation in vegetation structure and ecophysiology. We examined multiple leaf‐scale traits, including foliar 13C isotope discrimination (Δ13C), rates of photosynthesis and foliar N concentration and their relationships with multiple climate variables. Fifty‐five species across 27 families were examined across eight sites spanning contrasting biomes. Key questions addressed include: (i) Does Δ13C and intrinsic water‐use efficiency (WUEi) vary with climate at a continental scale? (ii) What are the seasonal and spatial patterns in Δ13C/WUEi across biomes and species? (iii) To what extent does Δ13C reflect variation in leaf structural, functional and nutrient traits across climate gradients? and (iv) Does the relative importance of assimilation and stomatal conductance in driving variation in Δ13C differ across seasons? We found that MAP, temperature seasonality, isothermality and annual temperature range exerted independent effects on foliar Δ13C/WUEi. Temperature‐related variables exerted larger effects than rainfall‐related variables. The relative importance of photosynthesis and stomatal conductance (gs) in determining Δ13C differed across seasons: Δ13C was more strongly regulated by gs during the dry‐season and by photosynthetic capacity during the wet‐season. Δ13C was most strongly correlated, inversely, with leaf mass area ratio among all leaf attributes considered. Leaf Nmass was significantly and positively correlated with MAP during dry‐ and wet‐seasons and with moisture index (MI) during the wet‐season but was not correlated with Δ13C. Leaf Pmass showed significant positive relationship with MAP and Δ13C only during the dry‐season. For all leaf nutrient‐related traits, the relationships obtained for Δ13C with MAP or MI indicated that Δ13C at the species level reliably reflects the water status at the site level. Temperature and water availability, not foliar nutrient content, are the principal factors influencing Δ13C across Australia.  相似文献   

3.
Genetic selection for whole‐plant water use efficiency (yield per transpiration; WUEplant) in any crop‐breeding programme requires high‐throughput phenotyping of component traits of WUEplant such as intrinsic water use efficiency (WUEi; CO2 assimilation rate per stomatal conductance). Measuring WUEi by gas exchange measurements is laborious and time consuming and may not reflect an integrated WUEi over the life of the leaf. Alternatively, leaf carbon stable isotope composition (δ13Cleaf) has been suggested as a potential time‐integrated proxy for WUEi that may provide a tool to screen for WUEplant. However, a genetic link between δ13Cleaf and WUEplant in a C4 species has not been well established. Therefore, to determine if there is a genetic relationship in a C4 plant between δ13Cleaf and WUEplant under well watered and water‐limited growth conditions, a high‐throughput phenotyping facility was used to measure WUEplant in a recombinant inbred line (RIL) population created between the C4 grasses Setaria viridis and S. italica. Three quantitative trait loci (QTL) for δ13Cleaf were found and co‐localized with transpiration, biomass accumulation, and WUEplant. Additionally, WUEplant for each of the δ13Cleaf QTL allele classes was negatively correlated with δ13Cleaf, as would be predicted when WUEi influences WUEplant. These results demonstrate that δ13Cleaf is genetically linked to WUEplant, likely to be through their relationship with WUEi, and can be used as a high‐throughput proxy to screen for WUEplant in these C4 species.  相似文献   

4.
Pinsapo fir (Abies pinsapo Boiss.) is an endangered Mediterranean conifer that has raised strong conservation interest as a paradigmatic example of species characterized by small and fragmented populations. We studied an old reforestation stand composed of A. pinsapo, Pinus nigra and Pinus sylvestris established in the 1910s in central-eastern Spain (about 500 km north of the species native distribution range), with the aim of evaluating the stand’s suitability as an ex situ conservation unit for the fir. To this end, we investigated the long-term performance of the stand and assessed genetic diversity of A. pinsapo. Tree-ring width (TRW) and carbon isotope discrimination (Δ13C) were used to characterise growth dynamics and intrinsic water-use efficiency (WUEi), respectively. Furthermore, 42 pinsapo firs were genotyped at five microsatellite loci to compare their genetic variation with published data on natural populations. A. pinsapo showed ca. two-fold higher radial growth than pines in the last 80 years; however, a growth decrease was observed for all species from the 1990s onwards. Indexed TRW was positively associated with Δ13C at the species level, denoting inter-annual growth dependence on water availability. Overall, Δ13C was higher for A. pinsapo compared to pines, indicating lower WUEi, but Δ13C significantly decreased over the last 50 years for all species, likely as the result of tighter stomatal regulation of water loss, resulting in WUEi increases of about 25 %. Recently, however, A. pinsapo showed reduced WUEi increase in concord with growth slowdown, suggesting a threshold response for stomatal regulation. Although genetic diversity of A. pinsapo was about half of natural populations, the old-planted stand could be important for the conservation of this endemic species considering its good long-term growth and physiology. The latest decrease in performance of A. pinsapo, however, asks for urgent management measures aimed at reducing the competition for water and promoting growth and natural regeneration. This study illustrates the potential of combining tree-ring-based long-term physiological information with genetic data to ascertain the prospects of artificial stands for conservation purposes.  相似文献   

5.
Breeding economically important C4 crops for enhanced whole‐plant water‐use efficiency (WUEplant) is needed for sustainable agriculture. WUEplant is a complex trait and an efficient phenotyping method that reports on components of WUEplant, such as intrinsic water‐use efficiency (WUEi, the rate of leaf CO2 assimilation relative to water loss via stomatal conductance), is needed. In C4 plants, theoretical models suggest that leaf carbon isotope composition (δ13C), when the efficiency of the CO2‐concentrating mechanism (leakiness, ?) remains constant, can be used to screen for WUEi. The limited information about how ? responds to water limitations confines the application of δ13C for WUEi screening of C4 crops. The current research aimed to test the response of ? to short‐ or long‐term moderate water limitations, and the relationship of δ13C with WUEi and WUEplant, by addressing potential mesophyll CO2 conductance (gm) and biochemical limitations in the C4 plant Sorghum bicolor. We demonstrate that gm and ? are not responsive to short‐ or long‐term water limitations. Additionally, δ13C was not correlated with gas‐exchange estimates of WUEi under short‐ and long‐term water limitations, but showed a significant negative relationship with WUEplant. The observed association between the δ13C and WUEplant suggests an intrinsic link of δ13C with WUEi in this C4 plant, and can potentially be used as a screening tool for WUEplant in sorghum.  相似文献   

6.
Water scarcity and nitrogen shortage are the main constraints on durum wheat productivity. This paper examines the combined effects of a constant water deficit and nitrogen supply (NS) on growth, photosynthesis, stomatal conductance (gs) and transpiration, instantaneous and time‐integrated water use efficiency (WUE) and nitrogen use efficiency (NUE) and carbon isotope discrimination (Δ13C) in durum wheat genotypes grown in pots under greenhouse conditions. Three water levels (40%, 70% and 100% container capacity), two nitrogen doses (high and low N) and four genotypes were assayed in a total of 24 experimental treatments. Water and nitrogen treatments were imposed 2 weeks after plant emergence. The growth, nitrogen content and Δ13C of the shoot and the gas exchange in the flag leaf were determined about 2 weeks after anthesis. As expected, both water and NS had a strong positive effect on growth. However, a reduction in water supply had low effect decreasing photosynthesis and transpiration, Δ13C and NUE and increasing WUE. On the contrary, increasing the level of nitrogen supplied had a significant negative effect on gs, which decreased significantly the ratio of intercellular to ambient CO2 concentrations and Δ13C, and increased both instantaneous and time‐integrated WUE. In addition, a higher N level also negatively affected the instantaneous and time‐integrated NUE. The Δ13C of shoots correlated significantly and negatively with either instantaneous or time‐integrated measurements of WUE. Moreover, within each NS, Δ13C also correlated negatively with the integrated NUE. We concluded that under our experimental conditions, Δ13C gives information about the efficiency with which not just water but also nitrogen are used by the plant. In addition, this study illustrates that a steady water limitation may strongly affect biomass without consistent changes in WUE. The lack of effect of the different water regimes on gas exchange, WUE and Δ13C illustrate the importance of how stress is imposed during growth.  相似文献   

7.
A collection of 368 advanced lines and cultivars of spring wheat(Triticum aestivum L.) from Chile, Uruguay, and CIMMYT(Centro Internacional de Mejoramiento de Maíz y Trigo), with good agronomic characteristics were evaluated under the Mediterranean conditions of central Chile. Three different water regimes were assayed: severe water stress(SWS, rain fed), mild water stress(MWS; one irrigation around booting), and full irrigation(FI; four irrigations: at tillering,flag leaf appearance, heading, and middle grain filling). Traits evaluated were grain yield(GY), agronomical yield components,days from sowing to heading, carbon isotope discrimination(△^13C) in kernels, and canopy spectral reflectance. Correlation analyses were performed for 70 spectral reflectance indices(SRI) and the other traits evaluated in the three trials. GY and △^13C were the traits best correlated with SRI, particularly when these indices were measured during grain filling. However,only GY could be predicted using a single regression, with ResearchNormalized Difference Moisture Index(NDMI2: 2,200; 1,100)having the best fit to the data for the three trials. For △^13C, only individual regressions could be forecast under FI(r^2: 0.25–0.37)and MWS(r^2: 0.45–0.59) but not under SWS(r^2: 0.03–0.09).NIR‐based SRI proved to be better predictors than those that combine visible and NIR wavelengths.  相似文献   

8.
In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought.One spring barley(Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars(Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil‐column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley(47%) than durum wheat(30%, Hourani). Root‐to‐shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response todrought but decreased for barley. The critical root length density(RLD) and root volume density(RVD) for 90% available water capture for wheat were similar to(cv. Hourani) or lower than(cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.  相似文献   

9.
Carbon isotope discrimination (Δ13C) is considered a useful indicator for indirect selection of grain yield (GY) in cereals. Therefore, it is important to evaluate the genetic variation in Δ13C and its relationship with GY. A doubled haploid (DH) population derived from a cross of two common wheat varieties, Hanxuan 10 (H10) and Lumai 14 (L14), was phenotyped for Δ13C in the flag leaf, GY and yield associated traits in two trials contrasted by water availability, specifically, rain‐fed and irrigated. Quantitative trait loci (QTLs) were identified by single locus and two locus QTL analyses. QTLs for Δ13C were located on chromosomes 1A, 2B, 3B, 5A, 7A and 7B, and QTLs for other traits on all chromosomes except 1A, 4D, 5A, 5B and 6D. The population selected for high Δ13C had an increased frequency of QTL for high Δ13C, GY and number of spikes per plant (NSP) when grown under rain‐fed conditions and only for high Δ13C and NSP when grown under irrigated conditions, which was consistent with agronomic performance of the corresponding trait values in the high Δ13C progeny; that is, significantly greater than that in the low Δ13C. Therefore, selection for Δ13C was beneficial in increasing grain yield in rain‐fed environments.  相似文献   

10.
The lack of good irrigation practices and policy reforms in Pakistan triggers major threats to the water and food security of the country. In the future, irrigation will happen under the scarcity of water, as inadequate irrigation water becomes the requirement rather than the exception. The precise application of water with irrigation management is therefore needed. This research evaluated the wheat grain yield and water use efficiency (WUE) under limited irrigation practices in arid and semi-arid regions of Pakistan. DSSAT was used to simulate yield and assess alternative irrigation scheduling based on different levels of irrigation starting from the actual irrigation level up to 65% less irrigation. The findings demonstrated that different levels of irrigation had substantial effects on wheat grain yield and total water consumption. After comparing the different irrigation levels, the high amount of actual irrigation level in semi-arid sites decreased the WUE and wheat grain yield. However, the arid site (Site-1) showed the highest wheat grain yield 2394 kg ha?1 and WUE 5.9 kg?3 on actual irrigation (T1), and with the reduction of water, wheat grain yield decreased continuously. The optimal irrigation level was attained on semi-arid (site-2) with 50% (T11) less water where the wheat grain yield and WUE were 1925 kg ha?1 and 4.47 kg?3 respectively. The best irrigation level was acquired with 40% less water (T9) on semi-arid (site-3), where wheat grain yield and WUE were 1925 kg ha?1 and 4.57 kg?3, respectively. The results demonstrated that reducing the irrigation levels could promote the growth of wheat, resulting in an improved WUE. In crux, significant potential for further improving the efficiency of agricultural water usage in the region relies on effective soil moisture management and efficient use of water.  相似文献   

11.
We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.  相似文献   

12.
A field study tested the hypothesis that modern wheat varieties invest a lesser proportion of the total dry matter (root plus shoot) in the root system compared to old varieties. The study was carried out on a duplex soil (sand over clay) at Merredin, Western Australia in a Mediterranean type environment. We also compared the root:shoot dry matter ratios of near-isogenic lines for Rht dwarfing genes.Root:shoot ratios decreased with crop growth stage and were closely related to the developmental pattern of a variety. All varieties appeared to accumulate more dry matter into shoots after the terminal spikelet stage. For the modern variety Kulin this occurred as early as 55 days after sowing (DAS), but did not occur until 90 DAS in the old variety Purple Straw. For all varieties, root dry matter reached its maximum at anthesis, while shoot dry matter continued to increase till maturity. At anthesis there were no significant differences in shoot dry matter between varieties, but from Purple Straw to Kulin root dry matter and thus root:shoot ratio decreased.The tall and dwarf isogenic lines had similar developmental and root:shoot dry matter accumulation patterns.At anthesis, the old variety Purple Straw had significantly higher root dry matter and root length density in the top 40-cm of the profile than modern variety Kulin. There were no varietal differences in rooting depth, water extraction or water use. At maturity about 30% of the total dry matter was invested in the roots among wheat varieties. Grain yield, harvest index (HI) and water use efficiency of grain (WUEgr) increased from old to modern varieties.The reduced investment of dry matter in the root system and thus the lower root:shoot ratio from early in the growing season may partly explain the increased HI and WUEgr of modern compared to old varieties.  相似文献   

13.
The combined use of stable carbon and oxygen isotopes in plant matter is a tool of growing interest in cereal crop management and breeding, owing to its relevance for assessing the photosynthetic and transpirative performance under different growing conditions including water and N regimes. However, this method has not been applied to wheat grown under real field conditions. Here, plant growth, grain yield (GY) and the associated agronomic components, carbon isotope discrimination (Δ13C) plus oxygen isotope composition (δ18O) as well as leaf and canopy gas exchange were measured in field‐grown wheat subjected to different water and N availabilities. Water limitation was the main factor affecting yield, leaf and canopy gas exchange and Δ13C and δ18O, whereas N had a smaller effect on such traits. The combination of Δ13C and δ18O gave a clear advantage compared with gas exchange measurements, as it provides information on the instantaneous and the long‐term plant photosynthetic and transpirative performance and are less labour intensive than gas exchange measurements. In addition, the combination of plant Δ13C and δ18O predicted differences in GY and related agronomical parameters, providing agronomists and breeders with integrative traits for selecting crop management practices and/or genotypes with better performance under water‐limiting and N‐limiting conditions.  相似文献   

14.
15.
The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high‐yielding traits of restricted‐tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high‐tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly‐tunnels in a four‐factor completely randomized split‐plot design with elevated CO2 (700 µL L?1), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24–35% in all four lines and terminal drought significantly reduced grain yield by 16–17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade‐off between yield components limited grain yield in lines with greater sink capacity (free‐tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade‐off in yield components.  相似文献   

16.
This review concerns ear photosynthesis and its contribution to grain filling in C3 cereals. Ear photosynthesis is quantitatively important to grain filling, particularly in dry areas where source (i.e., assimilate) limitations can occur. Compared to the flag leaf, ear photosynthesis exhibits higher water stress tolerance. Several factors could be involved in the ear's “drought tolerance.” First, although degree of C4 metabolism in ear parts has been reported, current evidence supports only typical C3 metabolism. Second, recycling of respired CO2 (i.e., refixation) could have considerable impact on final crop yield by preventing loss of CO2. Because refixation of CO2 is independent of atmospheric conditions, water use efficiency (measured as total ear photosynthesis divided by transpiration) could be higher in the ear than in the flag leaf. Moreover, ear parts (in particular awns) show higher relative water content and better osmotic adjustment under water stress compared to the flag leaf. This capacity, in addition to persistence of photosynthetic components under drought (delayed senescence), might help the ear to continue to fix CO2 late in the grain filling period.  相似文献   

17.
Although fast‐growing Populus species consume a large amount of water for biomass production, there are considerable variations in water use efficiency (WUE) across different poplar species. To compare differences in growth, WUE and anatomical properties of leaf and xylem and to examine the relationship between photosynthesis/WUE and anatomical properties of leaf and xylem, cuttings of six poplar species were grown in a botanical garden. The growth performance, photosynthesis, intrinsic WUE (WUEi), stable carbon isotope composition (δ13C) and anatomical properties of leaf and xylem were analysed in these poplar plants. Significant differences were found in growth, photosynthesis, WUEi and anatomical properties among the examined species. Populus cathayana was the clone with the fastest growth and the lowest WUEi13C, whereas P. × euramericana had a considerable growth increment and the highest WUEi13C. Among the analysed poplar species, the highest total stomatal density in P. cathayana was correlated with its highest stomatal conductance (gs) and lowest WUEi13C. Moreover, significant correlations were observed between WUEi and abaxial stomatal density and stem vessel lumen area. These data suggest that photosynthesis, WUEi and δ13C are associated with leaf and xylem anatomy and there are tradeoffs between growth and WUEi. It is anticipated that some poplar species, e.g. P. × euramericana, are better candidates for water‐limited regions and others, e.g. P. cathayana, may be better for water‐abundant areas.  相似文献   

18.
In C3 plants, carbon isotope discrimination (Δ) has been proposed as an indirect selection criterion for grain yield. Reported correlations between Δ and grain yield however, differ highly according to the analyzed organ or tissue, the stage of sampling, and the environment and water regime. In a first experiment carried out in spring wheat during two consecutive seasons in the dry conditions of northwest Mexico (Ciudad Obregon, Sonora), different water treatments were applied, corresponding to the main water regimes available to spring wheat worldwide, and the relationships between Δ values of different organs and grain yield were examined. Under terminal (post‐anthesis) water stress, grain yield was positively associated with Δ in grain at maturity and in leaf at anthesis, confirming results previously obtained under Mediterranean environments. Under early (pre‐anthesis) water stress and residual moisture stress, the association between grain Δ and yield was weaker and highly depended on the quantity of water stored in the soil at sowing. No correlation was found between Δ and grain yield under optimal irrigation. The relationship between Δ and grain yield was also studied during two consecutive seasons in 20 bread wheat cultivars in the Ningxia region (Northern China), characterized by winter drought (pre‐anthesis water stress). Wheat was grown under rainfed conditions in two locations (Guyuan and Pengyang) and under irrigated conditions in another two (Yinchuan and Huinong). In Huinong, the crop was also exposed to salt stress. Highly significant positive associations were found between leaf and grain Δ and grain yields across the environments. The relationship between Δ and yield within environments highly depended on the quantity of water stored in the soil at sowing, the quantity and distribution of rainfall during the growth cycle, the presence of salt in the soil, and the occurrence of irrigation before anthesis. These two experiments confirmed the value of Δ as an indirect selection criterion for yield and a phenotyping tool under post‐anthesis water stress (including limited irrigation).  相似文献   

19.
Zhang  Heping  Oweis  Theib Y.  Garabet  Sonia  Pala  Mustafa 《Plant and Soil》1998,201(2):295-305
Growth and water use were measured in wheat (Triticum aestivum L.) grown in northern Syria in a typical Mediterranean climate over five seasons 1991/92–1995/96. Water use was partitioned into transpiration (T) and soil evaporation (Es) using Ritchie's model, and water-use efficiency (WUE) and transpiration efficiency (TE) were calculated. The aim of the study was to examine the influence of irrigation and nitrogen on water use, WUE and TE. By addition of 100 kg N ha-1, Es was reduced from 120 mm to 101 mm under rain-fed conditions and from 143 mm to 110 mm under irrigated conditions, and T was increased from 153 mm to 193 mm under rain-fed conditions and from 215 mm to 310 mm under irrigated conditions. Under rain-fed conditions, about 35% of evapotranspiration (ET) may be lost from the soil surface for the fertilized crops and 44% of ET for the unfertilized crops. Transpiration accounted for 65% of ET for the fertilized crops and 56% for the unfertilized crops under rain-fed. As a result of this, WUE was increased by 44% for dry matter and 29% for grain yield under rain-fed conditions, and by 60% for dry matter and 57% for grain yield under irrigated conditions. Transpiration efficiency for the fertilized crops was 43.8 kg ha-1 mm-1 for dry matter and 15 kg ha-1 mm-1 for grain yield, while TE for the unfertilized crops was 33.6 kg ha-1 mm-1 and 12.2 kg ha-1 mm-1 for dry matter and grain yield, respectively. Supplemental irrigation significantly increased post-anthesis water use, transpiration, dry matter and grain yield. Water-use efficiency for grain yield was increased from 9.7 to 11.0 kg ha-1 mm-1 by supplemental irrigation, although WUE for dry matter was not affected by it. Irrigation did not affect transpiration efficiency for grain yield, but decreased transpiration efficiency for dry matter by 16%. This was associated with higher harvest index as a result of good water supply in the post-anthesis period and increased transpiration under irrigated conditions.  相似文献   

20.
Despite that the idea of better yield adaptation to low‐yielding conditions of barley than wheat is widespread, there have been few efforts in directly comparing their performance in Mediterranean conditions. We compared wheat and barley regional yields in 41 counties of Catalonia for the period 1992–2004. No differences were clear, particularly at low‐yielding conditions, with a trend for a better wheat performance in relatively high‐yielding environments. We then conducted field experiments during two consecutive seasons, sowing wheat and barley with six levels of nitrogen fertilisation under rainfed conditions (2003–04, experiment I) and two levels of nitrogen fertilisation and two water regimes (rainfed and irrigated) in 2004–05 (experiment II). In experiment I, wheat outyielded barley in treatments that received no N fertiliser (4.58 and 3.60 Mg ha?1, respectively) indicating that the higher yield potential of wheat was associated with better performance in a condition of relatively low yield. In experiment II, wheat and barley yields were found not to be significantly different across all treatments (2.86 and 2.62 Mg ha?1, respectively) or in the lowest yielding treatments (1.40 and 1.07 Mg ha?1, respectively). Therefore, it seems that it may not be universally accepted that under Mediterranean conditions barley would unequivocally behave better than wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号