首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Primary cultures of respiratory epithelium were produced as outgrowths from human fetal and adult tracheal and nasal polyp explants. Video recordings of the epithelial cell outgrowths were carried out after 5 days of culture and the ciliary beating frequency was analyzed by using a video technique. Uniform fields of differentiated ciliated cells were observed near the edge of the explant. In the transition region of the outgrowth from the explant to the outgrowth periphery, isolated ciliated cells were present, as well as cells with fused cilia. The ciliary beating frequency of the outgrowth of well-differentiated ciliated cells (13.5 +/- 1.4 Hz) was significantly higher (p less than 0.001) than the beating frequency of both the explant (11.9 +/- 0.7 Hz) and the ciliated cells with fused cilia (9.8 +/- 1.7 Hz). The same differentiation stages and functional activities were observed in the outgrowth cultures, whatever their origin. These in vitro models are comparable with each other and therefore could be useful for studying the ciliogenesis and functional activity of the human respiratory epithelium.  相似文献   

2.
Summary An improved Ham’s F12 nutrient medium supplemented with epidermal growth factor (EGF), insulin (INS), and transferrin (TF) was developed for continuous proliferation and clonal growth of primary rabbit tracheal epithelial (TE) cells in culture. The addition of small quantities of fetal bovine serum (FBS) (0.01 to 0.1%) to cultures had little measurable stimulation on TE cell growth and plating efficiency. However, serum levels higher than 0.1% inhibited cell growth and also masked the growth stimulating activities of EGF and INS despite an increase in cell attachment. Under this defined, hormone-supplemented medium, and in the presence of a trace amount of serum (0.01%), 10 to 20% of the protease-dissociated TE cells attached to the culture dish followed by at least four population doublings during 7 to 10 d of culture. Clonal growth occurred at a seeding density of 17 cells/cm2 with a plating efficiency of 6 to 8%. Confluent primary cultures could be passaged two to four times by treatment with a 0.1% trypsin-1 mM EDTA solution and a total of 10 to 30 population doublings of in vitro life span were obtained. The epithelial nature of cultured cells was confirmed by indirect immunofluorescent staining with antikeratin antibody as well as by transmission electron microscopy. This study shows that using this improved hormone-supplemented medium, rabbit TE cells can be maintained in culture for extended periods of time without the aid of a fibroblast feeder layer or explant tissue. This system could be useful for the study of cell differentiation of tracheal epithelium.  相似文献   

3.
Epithelial cells from tracheal mucosa offer significant potential as a cell source in development of tissue-engineered trachea. The purpose of this study was to investigate and optimize a suitable culture system for tracheal epithelial cells, including the methods of primary culture, passage, identification, and cryopreservation. Epithelial cells were isolated from rabbit tracheal mucosa using tissue explant technique and were subjected to immunohistochemistry, immunofluorescence, and cryopreservation after purification. Epithelial cells reached confluency at 14–15 d. Immunohistochemical staining for cytokeratin showed brown yellow-positive cytoplasm and blue-counterstained nuclei, while immunofluorescence staining for cytokeratin showed green-positive cytoplasm and clear cell outline, indicating that the cultured cells had properties of epithelial cells. After recovery, epithelial cells exhibited high survival and viability. The results demonstrated that in vitro isolation and cultivation model was successfully established to provide high proliferative capacity, typical morphology and characteristics of tracheal epithelial cells from trachea mucosa by the use of the tissue explant technique.  相似文献   

4.
Explants of small intestinal tissue have been cultured from fetal and young rats (from 13-day fetuses to 3-week-old rats). Growth of morphologically typical epithelial cells was obtained from explants of tissue from 14–20 day fetuses. Optimal growth was obtained using tissue from 17-day fetuses with outgrowth from the explant being observed 1-day after explant. Eighty per cent of explants developed epithelial growth by 11 days in culture. Initially, the epithelial outgrowth showed no morphological evidence of differentiation but after 5–10 days in culture differentiation into goblet or elongated cells with alkaline phosphatase activity occurred. Cells with brush borders and goblet cells were identified using electron microscopy. No differentiation occurred if the explant was removed even though growth continued.It was very difficult to culture tissue from fetuses older than 20 days' gestation, and when small intestine of 18–20-day fetuses was divided into two parts (proximal and distal) and cultured separately, growth of epithelial cells from explants of the proximal segment was less successful than that of the distal segment, indicating that the growth ability of these epithelial cells in vitro was closely related to tissue maturation in vivo. In contrast to the apparent relationship between fetal age and successful growth of intestinal epithelial cells, squamous epithelial cells of the esophagus could be grown from explants of 14-day fetus through newborn and 3-week-old rats.  相似文献   

5.
Human esophageal, tracheal, and pancreatic ductal fragments were collected at autopsy after a postmortem interval of 12 hours or less and maintained in explant organ culture for 30 days. The viability and growth of the explants was assessed by morphology, LDH enzyme release, and cellular outgrowth. The viability and growth of the bronchial explant epithelium was directly related to the postmortem interval. Esophageal epithelial regeneration followed the desquamation of the superficial cell layers. Pancreatic epithelia appeared to grow more slowly and with less outgrowth than the other tissues. Epithelial cell growth along the explant surface and onto the culture dish appeared to proceed through the well-characterized process that follows cell injury, i.e., flattening, migration, replication, and differentiation. Thus, sufficient numbers of viable epithelial cells capable of regeneration were present in routine autopsy epithelium, but there was considerable variation from tissue to tissue and case to case. The most effective and accurate approach to follow when evaluating and predicting the growth and viability of these explants is by using a combination of morphologic, enzymatic and biologic assays. Errors in the interpretation of viability are possible when only one assay method is utilized. These tissues grown in explant organ culture are suitable for studies on the mechanism and response of epithelia to cell injury, recovery and wound healing.Abbreviations 4F-1G 4% formaldehyde, 1% glutaraldehyde - HIFBS heat inactivated fetal bovine serum - IA immediate autopsy - LDH lactate dehydrogenase - OsO4 osmium tetroxide - RA routine autopsy  相似文献   

6.
Summary The differentiation of tracheal epithelial cells in primary culture was investigated according to the nature of the extracellular matrix used. Cultures obtained by the explant technique were realized on a type I collagen substratum either as a thin, dried coating or as a thick, hydrated gel supplemented with culture medium and serum. These two types of substratum induced distinct cell morphology and cytokeratin expression in the explant derived cells. Where cells are less proliferating (from Day 7 to 10 of culture), differentiation was evaluated by morphologic ultrastructural observations, immunocytochemical detection of cytokeratins, and determination of cytokeratin pattern by biochemical analysis. The epithelium obtained on gel was multilayered, with small, round basal cells under large, flattened upper cells. The determination of the keratin pattern expressed by cells grown on gel revealed an expression of keratin 13, already considered as a specific marker of squamous metaplasia, that diminished with retinoic acid treatment. Present results demonstrated by confocal microscopy that K13-positive cells were large upper cells with a dense keratin network, whereas lower cells were positively stained with a specific monoclonal antibody to basal cells (KB37). Moreover, keratin neosynthesis analysis pointed out a higher expression of K6, a marker of hyperproliferation, on gel than on coating. All these data suggest a differentiation of rabbit tracheal epithelial cells grown on gel toward squamous metaplasia. By contrast, the epithelium observed on coating is nearly a monolayer of very large and spread out cells. No K13-positive cells were observed, but an increase in the synthesis of simple epithelium marker (K18) was detected. These two substrata, similar in composition and different in structure, induce separate differentiation and appear as good tools to explore the mechanisms of differentiation of epithelial tracheal cells.  相似文献   

7.
Bordetellosis is an upper respiratory disease of turkeys caused by Bordetella avium in which the bacteria attach specifically to ciliated respiratory epithelial cells. Little is known about the mechanisms of pathogenesis of this disease, which has a negative impact in the commercial turkey industry. In this study, we produced a novel explant organ culture system that was able to successfully reproduce pathogenesis of B. avium in vitro, using tracheal tissue derived from 26 day-old turkey embryos. Treatment of the explants with whole cells of B. avium virulent strain 197N and culture supernatant, but not lipopolysaccharide (LPS) or tracheal cytotoxin (TCT), specifically induced apoptosis in ciliated cells, as shown by annexin V and TUNEL staining. LPS and TCT are known virulence factors of Bordetella pertussis, the causative agent of whooping cough. Treatment with whole cells of B. avium and LPS specifically induced NO response in ciliated cells, shown by uNOS staining and diaphorase activity. The explant system is being used as a model to elucidate specific molecules responsible for the symptoms of bordetellosis.  相似文献   

8.
At 10 days in ovo the embryonic chick epidermis acquires the ability to spread as a cohesive epithelial sheet when wounded. A tissue culture system has been constructed that supports epidermal cell outgrowth consistent with epidermal behaviour in vivo and permits experimental manipulation of the isolated tissue with growth factors and other hormones. This culture system consists of embryonic chick epidermis isolated at days 8, 10, and 12 of development, serum-free, chemically-defined culture medium, and the inner surface of the vitelline membrane of the hen's egg as the culture substratum. At 8 days the cellular outgrowth is mesenchymal in the absence of exogenous EGF. The 8 day tissues responds to added EGF by exhibiting precocious epithelial outgrowth. The results suggest that sensitivity to EGF or EGF-like growth factors is part of the mechanism underlying the developmental onset of epidermal wound healing in skin. The epidermal origin of the outgrowth is determined by antibody staining for specific cytokeratins. The epithelial character of the outgrowth is determined by visualizing actin microfilament distribution. The normal epithelial outgrowth shows apical/basal polarization of the sheet except at the edge. From 10 days on, the isolated epidermis exhibits epithelial outgrowth from explants in culture in the absence of exogenous EGF, suggesting endogenous production of an EGF-like factor. Glucocorticoid and mineralocorticoid hormones both produce a reduced amount of epithelial outgrowth. This retardation of the early outgrowth by glucocorticoids and mineralocorticoids could result from a reduced ability of the cut edge of the epidermis to 'disorganize' and assume the unpolarized migratory form required for rapid epidermal wound healing.  相似文献   

9.
Human esophageal epithelium obtained from intermediate autopsies (<12 h) was maintained as cell and explant cultures. In order to develop a serum-free, defined media culture model, several medias and additives were evaluated. The viability and differentiation of the epithelial cells cultured with serum-free, Keratinocyte Growth Media (KGM, Clonetics Co., San Diego, CA) was improved over that of esophageal cells and explants cultured in either serum-supplemented CMRL 1066 (OCM), serum-free additive-supplemented CMRL 1066, or cimetidine-supplemented CMRL 1066. The KGM component EGF was determined to be trophic for esophagus cells on the basis of findings of increased 3H-TdR tabelling in KGM cultures when compared to control cells grown in KGM without EGF (KBM). The morphologic pattern of the cytoskeletal proteins actin, keratin, and vimentin were characterized in isolated cell populations. The intermediate filaments, keratin, and vimentin were co-expressed in these epithelial cells. Esophageal explant viability, differentiation, and outgrowth from 15 cases were also evaluated in dishes coated with basement membrane associated proteins. Explants cultured in these dishes were equally well-preserved and differentiated. There were no significant differences in the explant histology when there was protein coating of the culture dishes, although one case showed improved outgrowth with laminin coating. A main advantage for using this culture system is that the same medium (KGM) can be used for both the culture of explants and isolated epithelial cells. Future applications of this model include determining: (1) the effect different concentrations of EGF and calcium in the media will have on esophageal proliferation and differentiation, and (2) the role of different basement membrane associated proteins on the plating efficiency of either isolated or outgrowth epithelial esophageal cells.This is publication #2544 from the Pathobiology Laboratory.  相似文献   

10.
Quantitation of in vitro ciliated cell growth through image analysis   总被引:1,自引:0,他引:1  
Summary Ciliated cell cultures can be produced in outgrowths from explants of human respiratory epithelium. An image analysis technique was develope to quantify the percentage of active ciliated cells present in these cultures. The subtraction 2 by 2 of five successive video images of the cultures, followed by the addition of the resulting images, allowed the determinaton of the culture surface covered by ciliated cells. The percentage of this surface varied according to the regions of the explant (27.7% in the outgrowth near the explant and 4.1% at the periphery of the outgrowth). High variations were observed within the same region of an outgrowth, as well as from one outgrowth to another. However, maximal differentiation was observed after 4 d of culture. The quantitation techniques described in the present work might be useful for studying in vitro the respiratory epithelial injury and the subsequent repair processes. This work was supported by CEB-INSERM and SYNTHELABO-INSERM grants.  相似文献   

11.
12.
Primary cell culture from gill explants of rainbow trout   总被引:1,自引:0,他引:1  
Primary cultures of gill cells were initiated from gill filament explants of rainbow trout, Oncorhynchus mykiss . The explants were cultured in Leibovitz l -15 medium with 5, 10 or 20% foetal calf serum (FCS) and l -glutamine. The attachment efficiency was serum-dependent though increased FCS concentration did not stimulate further outgrowth of cells. The explants produced cell outgrowth 24 h after attachment as a sheet of cells which exhibited characteristics of gill pavement epithelial cells as indicated by surface microridges revealed by scanning electron micrographs. There was high proliferation for the first 14 days then a stable plateau for 30 days followed by a decline phase from 45 days. Following removal of cells, the explants produced further cell outgrowth which was especially active at the proliferation phase (14 days). Removal of these cells caused the explants to produce a further proliferation of cells reaching confluence in 10–14 days. After the third cell removal cell outgrowth from explants showed migratory activity but did not develop to resemble gill epithelial cells. The use of gill explants to establish primary cultures of fish gill cells has advantages which include longevity of the culture and successive proliferations from explants which could provide a useful tool for the investigation of long-term processes in cellular biology and reduce the number of culture preparations.  相似文献   

13.
Explants of human breast (obtained aseptically from ten women ages 18-37) were examined and the vitamin A compound B-retinyl acetate was tested (at 3 X 10(-5) and 3 X 10(-6) M) for its effects on the fine structure and growth of the epithelium. In the absence of B-retinyl acetate, cells growing out from the explant (outgrowth cells) underwent squamous metaplasia, began to accumulate many intermediate filaments (tonofilaments), and revealed large desmosomes after 2 weeks in culture. In the presence of either concentration of B-retinyl acetate, the epithelial cells were largely prevented from undergoing squamous metaplasia. The glandular epithelium inside the explant maintained a typical secretory appearance for 2 weeks in control cultures (without the retinoid) and then began to show increased numbers of lysosomes and a loss of secretory granules. These glandular epithelial cells did not undergo squamous metaplasia, but they contained increased numbers of intermediate filaments. In contrast, glandular epithelium cultured in either concentrations of B-retinyl acetate appeared secretory for as long 6 weeks in culture, and intermediate filaments were not obvious. Autoradiographs demonstrated that both concentrations of B-retinyl acetate inhibited cell division in the outgrowth epithelium and in the (internal) glandular epithelium. The ability of B-retinyl acetate to reverse squamous metaplasia in the outgrowth cells was also tested. Outgrowth cells reversed to a more normal ductlike appearance after 6 weeks culture in standard medium followed by only 1 week in 20 micrograms/ml B-retinyl acetate. After 7 weeks in standard medium and 1 week in 10 micrograms/ml B-retinyl acetate, the cells showed a partial reversal of the squamous metaplasia.  相似文献   

14.
Summary To study the growth regulation of epithelial cells as a sheet, I developed an outgrowth culture system for normal human ectocervical epithelial (NHCE) cells, whereby outgrowths from tissue explants increase their radius in a constant rate over time. Cinematographic observation revealed that throughout the outgrowths the cells coordinately migrate and proliferate. To date, all 59 specimens examined have shown similar growth characteristics, with explant size not causing any difference in the growth rate; 108 cells/specimen can easily be obtained in 3 wk. Cell densities of outgrowths also remain constant. Moreover, there is no fibroblast contamination, and removal of explants does not affect growth rate. Therefore, pure epithelial outgrowth in uniform growth condition can be prepared for further experiments. The results demonstrate that the outgrowth culture system is an attractive model for analysis of growth control mechanisms in normal human epithelium in vitro.  相似文献   

15.
Explants of the hippocampus of newborn rats were studied neurohistologically and with electron microscope within 5--35 days of explantation. Two zones are found in the culture of the hippocampus: a zone of explant, and a zone of outgrowth. Neurons, glial cells and a network of their fibres are compactly arranged in the center of the former, whereas, the latter involves a layer of migrated glial cells. The explant is surrounded by glia limiting cells. Three types of neurons are identified in the long living culture of the hippocampus: pyramidal, polymorphic and granule cells. Numerous nerve endings observed in the hippocampic explant can be recognized as axodendritic, axosomatic and glomerular synapses. The availability of several types of neurons, a variety of synapses and their complication during outgrowth of the culture are suggestive of a formation in the hippocampic explant of a functional reflex activity.  相似文献   

16.
The role played by either of the two differentiated mammary epithelial cell types in human breast cancer progression is currently not defined. This work addresses the question of whether the mammary tumor suppressor gene product BRCA1 is localized in basal and/or luminal epithelial cells in noncancerous outgrowth cultured from breast organoids. Primary epithelial cell outgrowths from ductal and alveolar preparations were directly employed to facilitate small-scale analysis under conditions closely approximating intact tissue. BRCA1 immunofluorescence was detected for the most part in cell nuclei of the epithelial outgrowth when using confocal microscopy. Nuclear staining was punctate in the cells with higher labeling intensity. Only minimal nonspecific staining was observed with mouse IgG as a negative primary antibody control or with primary antibody against the cell membrane receptor ErbB2, reported to be expressed in breast cancer, but was either not detectable or weakly expressed in normal breast tissue. Dual labeling was used to distinguish which epithelial cell type(s) stains for BRCA1. Primary monoclonal antibody against vimentin was used to identify basal cells, while antibody against cytokeratin 19 was used to identify luminal cells. Monoclonal antibody against BRCA1 was used for colabeling with each of these markers. Epifluorescence microscopy revealed BRCA1 immunoreactivity in both basal and luminal interphase cells. BRCA1 immunofluorescence was diffusely located about the chromosome mass during mitosis.  相似文献   

17.
Extracellular matrix is considered to play an important role in determining the phenotype of cells with which it interacts. Here we have investigated the possibility that extracellular matrix is involved in specifying the pattern of keratin expression in epithelial cells. For these studies, we have developed an explant system in which epithelial cells from one type of stratified epithelial tissue, namely conjunctiva, are maintained on an extracellular matrix substrate derived from a different tissue, namely cornea. These ocular tissues are ideal for such analyses since they express distinct sets of keratins. For example, bovine conjunctival epithelium processed for immunofluorescence is not recognized by antibody preparations against keratin K3 or K12. In contrast, K3 and K12 antibodies generate intense staining in bovine corneal epithelium. At the immunochemical level, conjunctival cells in situ appear to possess no K12 and only trace amounts of K3, whereas corneal epithelial cells in situ possess both K3 and K12. When conjunctival cells are maintained on a corneal substrate with an intact basement membrane for 10 days in vitro they begin to express keratin K12 as determined by immunofluorescence. On the other hand, conjunctival cells that are maintained on a corneal substrate lacking a basement membrane fail to show staining with K12 antibodies. Conjunctival cells begin to show intense staining using K3 antibodies within about 10 days of being placed in culture regardless of their substrate. These results indicate that basement membrane can play a positive role in determining cell-specific expression of certain keratins such as K12. However, other keratins such as K3 may be "unmasked" and/or their expression may be upregulated simply by placing conjunctival epithelial cells in culture. We speculate that in conjunctiva K3 expression is influenced by certain negative exogenous factors. We discuss the possible means of regulation of keratin expression in our model system.  相似文献   

18.
DNA synthesis was detected by the incorporation of 5-bromo-2' deoxy-uridine (BrdU) in adult Anopheles albimanus organs in culture in response to a challenge with Saccharomyces cerevisiae. Abdomens of mosquitoes inoculated with Roswell Park Memorial Institute medium (RPMI, control) or yeast were cultivated in RPMI plus ConA and BrdU for 5 days. DNA was obtained by phenolic extraction and the incorporated BrdU was quantified by ELISA using anti-BrdU peroxidase-labeled antibodies. Abdomen tissues of mosquitoes inoculated with yeast showed higher DNA synthesis than controls. Organs from untreated mosquitoes cultured in the presence of zymosan also synthesized DNA but at a lower level than tissues from yeast-inoculated mosquitoes. In similar experiments, DNA synthesis was inhibited by the addition of colchicine. DNA synthesis, evidenced by epifluorescence using an anti-BrdU fluorescein-labeled antibody, occurred in fat body, epithelial cells in pleural membranes, and the dorsal vessel. Pleural membranes showed the highest number of labeled cells. These tissues were also labeled with anti-PCNA (proliferating cell nuclear antigen) antibodies, two of which were able to produce polytene chromosomes under yeast stimulation. These results demonstrate that different An. albimanus tissues undergo DNA synthesis in response to foreign particles.  相似文献   

19.
Summary The growth, differentiation, ciliary beating pattern and frequency of human respiratory ciliated cells in primary culture were studied by scanning and transmission electron microscopy and by videomicroscopy. The epithelial cells were obtained as outgrowth from explants of adult nasal polyps. When the explants were grown on type-I and type-IV collagen substrates in a standard serum-free, hormone-supplemented medium, a high percentage of ciliated cells (range 29±5% to 37±6%) was present within 2 days of culture. After 5 days of culture, the percentage of ciliated cells near the explant was 51±5%. Most of the cultured ciliated cells (85%) were characterized by individual cilia showing a coordinated movement during the beat cycle and a beating frequency (13.3±1.3 Hz) similar to that reported in vivo. In the other 15% of the ciliated cells, the dyskinetic cilia were aggregated into clumps and characterized by a rigid and planar bending movement and a lower (P<0.01) beating frequency (10.7±1.4 Hz). It is suggested that the latter type of cell, already described during fetal development, might be an intermediate type of ciliated cell which appears temporarily during the surface respiratory epithelial differentiation.  相似文献   

20.
Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号